Решение: Обозначим время до встречи автобусов за t, -cкорость V1 первого автобуса равна: V1=132/(t+50/60) -cкорость второго автобуса равна: V2=132/(t+1 12/60) Скорость сближения автобусов равна: 132/(t+50/60)+132/(t+1 12/60)=132/t 132/(t+5/6)+132/(t+1,2)=132/t приведём уравнение к общему знаменателю (t)*(t+5/6)*(t+1,2) t*(t+1,2)*132+t*(t+5/6)*132=(t+5/6)*(t+1,2)*132 132t²+158,4t+132t²+110t=(t²+5/6*t+1/2t+1)*132 132t²+158,4t+132t²+110t=132t²+110t+158,4t+132 132t²+158,4t+132t²+110t-132t²-110t-158,4t-132=0 132t²-132=0 132t²=132 t²=132/132 t²=1 t=√1 t=1 Отсюда: -скорость первого автобуса равна: V1=132/(1+50/60)=132/(1+5/6)= =132/(11/6)=72(км/час) -скорость второго автобуса равна: V2=132/(1+1 12/60)=132/(1+1,2)=132/2,2=60(км/час)
ответ: скорость первого автобуса 72км/час; скорость второго автобуса 60км/час
1) Определить, при каких значениях a и b многочлен x³+ax²+2x+b делится на x²+x+1 делим : (x³+ax²+2x+b) / (x²+x+1) x³+x² +x x+(a-1) (a-1)x²+x+b (a-1)x²+(a-1)x+(a-1) х(2-a)+b-a+1 {2-a = 0 {b-a+1=0 a=2 b=1 x³+2x²+2x+1= (x+1)(x²+x+1)
2) х скорость точки, движущейся равномерно по прямой 630/х время за которое точка бы 630м со скоростью х (х+3) скорость при увеличении скорости на 3 м/с 630/(х+3) время за которое точка бы 630м при увеличении скорости на 3 м/с 630/x -280 время, сокращается на 280 c 630/x -1 время, сокращается на 1 c время, сокращается не меньше, чем на 1 с и не более, чем на 280c: 630/(х+3) ≤ 630/x -1 время, сокращается не меньше, чем на 1 с 630/x -280 ≤ 630/(х+3) время, сокращается не более, чем на 280 c 630/(х+3) ≤ (630-x)/x 630x ≤ (630-x)(х+3) 630x ≤ 630x+3*630 - x²-3x 0 ≤ 1890 - x²-3x x²+3x-1890 ≤ 0 630/x -280 ≤ 630/(х+3) (630-280x)/x ≤ 630/(х+3) (630-280x)(х+3) ≤ 630x 630х+3*630-280x²-3*280x ≤ 630x 1890-280x²-840x ≤ 0 280x²+840x-1890 ≥ 0 28x²+84x-189 ≥ 0 4x²+12x-27 ≥ 0 решим систему: {x²+3x-1890 ≤ 0 {4x²+12x-27 ≥ 0 x²+3x-1890 ≤ 0 найдём корни x1 = - 45 скорость не может быть < 0 x2 = 42 x - 42 ≤ 0 x ≤ 42 м/сек 4x²+12x-27 ≥ 0 найдём корни x1 = -4,5 скорость не может быть < 0 x2 = 1,5 x-1,5 ≥ 0 x ≥ 1,5 м/cек ответ: x скорость точки изменяется пределах: 1,5 м/сек ≤ х ≤ 42 м/сек
3х-х=1+5
2х=6
х=3