ух сколько ненужных лишних накруток
снимает нечетные степени , совершенно очевидно, что если число больше другого, то и в 9-й степени они будут также соотносится
∛x + 3^(x+1) - 3 > ∛x + 9^x - 3^x
∛x взаимно уничтожатся , никаких ограничений на корни нечетной степени неи надо (на четной надо)
9^x = (3^x)^2
3^x=t
3t - 3 > t^2 - t
t^2 - 4t + 3 < 0
D = 16-12 = 4
t12=(4+-2)/2 = 1 3
(t-1)(t-3) < 0
метод интервалов
(1) (3)
t∈(1 3)
t>1 3^x>1 3^x>3^0 x>0
t<3 3^x < 3 x < 1
x∈(0, 1)
ух сколько ненужных лишних накруток
снимает нечетные степени , совершенно очевидно, что если число больше другого, то и в 9-й степени они будут также соотносится
∛x + 3^(x+1) - 3 > ∛x + 9^x - 3^x
∛x взаимно уничтожатся , никаких ограничений на корни нечетной степени неи надо (на четной надо)
9^x = (3^x)^2
3^x=t
3t - 3 > t^2 - t
t^2 - 4t + 3 < 0
D = 16-12 = 4
t12=(4+-2)/2 = 1 3
(t-1)(t-3) < 0
метод интервалов
(1) (3)
t∈(1 3)
t>1 3^x>1 3^x>3^0 x>0
t<3 3^x < 3 x < 1
x∈(0, 1)
тогда скорость по течению = (х + 5) км/ч,
скорость против течения = (х - 5) км/ч.
Время баржи по течению = 40 / (х + 5) часов
Время баржи против течения = 30 /(х - 5) часов
По условию задачи составим уравнение:
40/(х + 5) + 30/(х - 5) = 5 0бщ. знам. = х^2 - 25
40 *(x -5) + 30*(x + 5) = 5*(x^2 - 25)
40x - 200 + 30x + 150 = 5x^2 - 125
-5x*2 + 70x + 75 = 0 сокращаем на - 5,
х^2 - 14x - 15 = 0
D = 196 - 4(- 15) = 196 + 60 = 256 YD = 16
x1 = (14 + 16) /2 = 15
х2 = (14 - 16)/ 2 = -1 (не соответствует условию)
ответ: 15км/ч - собственная скорость баржи.