х-скорость первого;
у-скорость второго;
Необходимо составить систему уравнений первым уравнением будет:
3⅓(х+у)=30;
по второй части условия видно что первый бы шел 4,5 часа, а второй 2,5 следовательно получаем уравнение:
4,5х+2,5у=30
домножим первое уравнение на 3 получим:
10х+10у=90;
домножим второе уравнение на 2, получим:
9х+5у=60;
домножим второе уравнение на 2 и выразим оттуда 10у:
10у=120-18х;
подставим 10у в первое уравнение, откуда находим: х=3,75
далее подставляем значение х в любое уравнение и получаем у=5,25
2x-3=5-2x
2x+2x=5+3
4x=8
x=8/4
x=2
2x+1=3-x
2x+x=3-1
3x=2
x=2/3
x-4=2-3x
x+3x=2+4
4x=6
x=6/4
x=1.5
2x+5=5-x
2x+x=5-5
3x=0
x=0
x-4=4-x
x+x=4+4
2x=8
x=8/4
x=2
2x-8=11-3x
2x+3x=11+8
5x=19
x=19/5
x=3.8
17x+11=6+12x
17x-12x=6-11
5x=-5
x=-5/5
x=-1
11x-4=4-x
11x+x=4+4
12x=8
x=8/12
x=2/3
x-8=11-12x
x+12x=11+8
13x=19
x=19/13
2x-4=5-x
2x+x=5+4
3x=9
x=9/3
x=3
x/2-3x-2/4=3
0.5x-3x=3+0.5
-2.5x=3.5
x=-3.5/2.5
x=-1.4
2x-y=2
y = 2x - 2 = 2(x-1)
5x^2-8xy+y^2 = 5x^2 - 8x(2x-2) + 4(x-1)^2 = 5x^2 - 16x^2 + 16x +4x^2 - 8x + 4 =
=-7x^2 +8x + 4
-7x^2 +8x + 4 - это парабола с ветвями, направленными вниз. максимальное значение в вершине параболы
найдем вершину параболы:
(-7x^2 +8x + 4)' = -14x + 8
-14x + 8 = 0
x = 4/7
5x^2-8xy+y^2 = -7x^2 +8x + 4 = -7*16/49 +8*4/7 +4 = 44/7 - максимальное значение