Объяснение:
Средняя линия: EF = 5,5√5 ед.
Площадь трапеции: Sabcd = 82,5 ед²
Объяснение:
Найдем длины (модули) отрезков:
|АВ| = √((Xb-Xa)²+(Yb-Ya)²) = √((-1-(-9))²+(5-1)²) = √80 = 4√5 ед.
|BC| = √((Xc-Xb)²+(Yc-Yb)²) = √((8-(-1))²+(2-5)²) = √90 = 3√10 ед.
|CD| = √((Xd-Xc)²+(Yd-Yc)²) = √((-6-8))²+(-5-2)²) = √245 = 7√5 ед.
|АD| = √((Xd-Xa)²+(Yd-Ya)²) = √((-6-(-9))²+(-5-1)²) = √45 = 3√5 ед.
Два вектора коллинеарны (параллельны), если отношения их координат равны. В нашем случае это векторы
АВ{8;4} и CD{14;7}, так как 8/14 = 4/7. Следовательно, основания трапеции - это отрезки АВ и CD. Меньшая из боковых сторон - AD - высота прямоугольной трапеции.
Тогда имея длины всех сторон и определив, какие из них являются основаниями, найдем:
Среднюю линию: EF = (AB+CD)/2 = 11√5/2 = 5,5√5 ед.
Площадь трапеции: Sabcd = EF·AD = (5,5√5)·3√5 = 82,5 ед²
Или так:
Средняя линия трапеции - отрезок, соединяющий середины боковых сторон. Найдем координаты середин сторон АD и BC - точек E и F соответственно:
Е((Xa+Xd)/2; (Ya+Yd)/2) или Е((-9-6)/2; (1-5)/2).
F((Xb+Xc)/2; (Yb+Yc)/2) или F((-1+8)/2; (5+2)/2). Итак, имеем точки:
E(-7,5;-2) и F(3,5;3,5). Тогда длина средней линии равна:
|EF| = √((Xf-Xe)²+(Yf-Ye)²) = √((3,5-(-7,5))²+(3,5-(-2))²) = √151,25 ед.
Или EF = √151,25 = 5,5√5 ед.
Площадь трапеции равна средней линии, умноженной на высоту.
Sabcd = EF·AD = 5,5√5·3√5 = 3·27,5 = 82,5 ед².
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
одна сторона= х, а другая= х+4. вот увеличиваем х в 2 раза, получается 2х. След-но периметр равен (2х+х+4)*2=56, Раскрываем- 6х=48, где х=8. одна сторона=8, а другая= 8+4=12