М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
handofkremlin
handofkremlin
18.12.2021 13:42 •  Алгебра

Сделать а)наименьшее и наибольшее значения функцции у=-2х-6 на отрезке [-2; 1] б)координаты точки пересечения графика функции у=-2х-6 с осью ох

👇
Ответ:
koninaes
koninaes
18.12.2021

1)Функция y = -2x - 6 является убывающей, поскольку k<0(k = -2). Это значит, что большему значению аргумента соответствует меньшее значение функции. Поэтому, данная функция имеет своё наименьшее значение в точке с абсциссой 1, а наибольшее - в точке с абсциссой -2. Подставим данные абсциссы в уравнение и вычислим требуемые значения:

 

y(наим) = -2 * 1 - 6 = -2 - 6 = -8

y(наиб) = -2 * (-2) - 6 = 4 - 6 = -2

Данная задача выполнена.

 

2)В точке пересеченя графика с осью OX ордината равна 0. Таким образом, задача сводится к решению уравнения:

 

-2x - 6 = 0

-2x = 6

x = -3

4,8(22 оценок)
Открыть все ответы
Ответ:
den222276
den222276
18.12.2021

Объяснение:

так, рассмотрим этот пример:

Пример 3, упростить выражение:

\frac{b}{2 {a}^{2} {(a + b)}^{2} } - \frac{1}{3a (b - a)(b + a) } + \frac{b}{6 {a}^{3} (a - b) }

здесь, автор пытался донести, что нам нужно домножить на определенные числа, дабы получить общий знаменатель 6а³(а-b)(a+b)²

При этом, он имел ввиду, что умножение на второй знаменатель можно произвести по разному:

1) если использовать общий множитель

6а³(b-a)(a+b)² , то домножить нужно на 2а²(а+b), и это действительно не принципиально, но тогда третий множитель будет "страдать" - нужно будет домножить его уже со знаком "-": -(a+b)², чтобы при умножении, как вы и сказали: (а-b) = -(b-a) и при умножении двух минусов, мы получаем знак "+"

, так и наоборот для второго случая:

2)если использовать общий множитель

6а³(а-b)(a+b)² , то домножить второй знаменатель нужно на -2а²(а+b)!

А третий на (a+b)², с плюсовым перед стоящим знаком.

И не забываем так же про первый знаменатель :)

Тут всё дело в том, какой общий множитель вы захотите использовать.

Надеюсь, понятно объяснил.

4,5(47 оценок)
Ответ:
Нолик27
Нолик27
18.12.2021
Произведение двух множителей ≤0,тогда и только тогда, когда множители имеют разные знаки.
Решаем две системы
1) \left \{ {{20-11x \geq 0} \atop {log_{5x-9}(x^2-4x+5) \leq 0}} \right. \\ \\ \left \{ {{20-11x \geq 0} \atop {log_{5x-9}(x^2-4x+5) \leq log_{5x-9}1}} \right.
решение системы предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≥0;
5x-9>1;
х²-4х+5≤1;
х²-4х+5>0.
Решение каждого неравенства системы:
х≤20/11
х>1,8
х=2
х- любое
О т в е т. 1а) система не имеет решений.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее  значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≥0
0<5x-9<1
х²-4х+5≥1
х²-4х+5>0
Решение
х≤20/11
0<х<1,8
х-любое (так как х²-4х+4≥0 при любом х)
х- любое
Решение системы 1б) 0<x<1,8, так как (20/11) >1,8
О т в е т. 1)0<x<1,8
2) \left \{ {{20-11x \leq 0} \atop {log_{5x-9}(x^2-4x+5) \geq 0}} \right. \\ \\ \left \{ {{20-11x \leq 0} \atop {log_{5x-9}(x^2-4x+5) \geq log_{5x-9}1}} \right.

решение системы также предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≤0
5x-9>1
х²-4х+5≥1
х²-4х+5>0
Решение
х≥20/11
х>1,8
х-любое
х- любое
О т в е т.  2 а) х≥20/11.

б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее  значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным,  получаем систему  четырех неравенств:
20-11х≤0
0<5x-9<1
х²-4х+5≤1
х²-4х+5>0
Решение
х≥20/11
0<х<1,8
х=2
х- любое
Решение системы 2б) нет решений
О т в е т. 2) х≥20/11

О т в е т. 0 < x < 1,8 ; x≥20/11
или х∈(0;1,8)U(1целая 9/11;+∞)
4,8(26 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ