Задание. Какие из чисел √18,√26,√30 заключены между числами 5 и 6. Решение: Проверим, заключен ли между числами 5 и 6 число √18, т.е., оценивая в виде двойного неравенства, получим Возведем все части неравенства в квадрат, будем иметь Отсюда следует, что число √18 не заключен между числами 5 и 6, т.к. неравенство 25<18 не верное.
Проверим теперь для √26, т.е. . Возведя все части неравенства в квадрат, получим . Неравенства выполняются, следовательно, число √26 заключен между числа 5 и 6.
Проверим теперь для √30, то есть, . Возведя все части неравенства в квадрат, получим: . Видим, что неравенства правильны, следовательно, число √30 заключен между числа 5 и 6.
График расположен выше оси ОХ. Точки пересечения с осью ОХ: . Графики функций - это параболы , ветви которых направлены вниз, а вершины в точках (0, а). При х=0 sin0=0 и точка (0,0) является точкой пересечения графика у=|sinx| и оси ОУ, на которой находятся вершины парабол. При а=0 графики y=|sinx| и y=x² имеют одну точку пересе- чения - (0,0), при а<0 точек пересе- чения вообще нет. А при а>0 будет всегда 2 точки пересе- чения этих графиков и соответственно, будет выполняться заданное неравенство. То есть одна точка пересечения при а=0. ответ: а=0.