З'ясуємо, як знайти область визначення деяких функцій, заданих формулою.
1. Якщо функція — многочлен, то вона існує при будь-яких значеннях аргумента, тобто її область визначення — всі дійсні числа.
2. Якщо функція задана формулою, яка містить аргумент у знаменнику дробу, то до області визначення функції входять всі дійсні числа, крім тих, які перетворюють знаменник в нуль.
3. Якщо функція задана формулою, яка містить арифметичний квадратний корінь, то до області її визначення входять всі дійсні числа, при яких підкореневий вираз набуває невід'ємних значень.
Область значень функції (множина значень) - усі значення, яких набуває функція.
Функція є парною - якщо для будь-якого х з області визначення функції виконується рівність f(x)=f(-x)
Функція є непарною - якщо для будь-якого х з області визначення функції виконується рівність f(-x)=-f(x)
1-ый класс - 42 ученика
2-ой класс - ? учеников, на 3 <, чем в 3-ем ВСЕГО: 125 учеников
3-ий класс - ? учеников
Пусть Х учеников - в 3-ем классе (это вопрос задачи, поэтому его принимаем за Х).
Тогда во 2-ом классе - (Х-3) учеников. В 1-ом классе - 42 ученика. Всего 125 учеников (т.е. находим сумму). Составим уравнение:
42+(Х-3)+Х=125
42+Х-3+Х=125
Х+Х+42-3=125
2Х+39=125
2Х=125-39
2Х=86
Х=86:2
Х=43
ответ: 43 ученика в 3-ем классе.
Нам нужна параллельная прямая, проходящая через точку (3; 0). Уравнение ее отличается лишь свободным членом, который и нужно найти. Подставляем в исходное уравнение (свободный член - C) координаты:
x - 3y + C = 0
3 + C = 0
C = -3
x - 3y - 3 = 0 - искомое уравнение параллельной стороны.
Также нам нужно уровнение, график которого перпендикулярен полученной прямой и проходит через данную точку.
Перпендикулярная прямая - члены при неизвестных поменяны местами, а знак между ними изменен. Свободный член также неизвестен.
3x + y + C = 0
Подставляем координаты и получаем, что C = -9
Уравнение:
3x + y - 9 = 0
Теперь последняя сторона:
Расстояние между параллельными прямыми:
|C2 - C1|/(A^2 + B^2)^1/2
Заметим, что (A^2 + B^2)^1/2 равно для двух пар противоположных сторон. Следовательно:
|C2 - C1| для первой пары противоположных сторон = |C2 - C1| для второй (уравнение стороны которого мы и ищем).
4 = |C2 + 9|, следовательно C2 = -5 или C2 = -13
Как мы видим, возможно построить два квадрата (логично) из данных условий.
Итак. Уравнения:
x - 3y - 3 = 0
3x + y - 9 = 0
3x + y - 5 = 0 или 3x + y - 13 = 0