Если периметр прямоугольника равен 56 см ,то полупериметр равен 28 см. Обозначим длину прямоугольника через х см ,тогда ширина равна
(28 - x) см . Стороны прямоугольника и диагональ образуют прямоугольный треугольник, в котором стороны прямоугольника - это катеты, а диагональ - это гипотенуза. Тогда по теореме Пифагора :
x² + (28 - x)² = 20²
x² + 784 - 56x + x² - 400 = 0
2x² - 56x + 384 = 0
x² - 28x + 192 = 0
D = (- 28)² - 4 * 192 = 784 - 768 = 16 = 4²
x₁ = (28- 4)/2 = 12
x₂ = (28 + 4)/2 = 16
28 - 12 = 16
28 - 16 = 12
ответ : стороны прямоугольника равны 12 см и 16 см
Вот накалякал. Разбирайся :)
xy/(x+y) = 5
xz/(x+z) = 7
yz/(y+z) = 9
xy = 5x + 5y
xz = 7x + 7z
yz = 9y + 9z
x(y-5) = 5y
x = 5y/(y-5)
5yz/(y-5) = 35y/(y-5) + 7z
5yz = 35y + 7z * (y-5)
5yz = 35y + 7yz - 35z
2yz + 35y = 35z
y(2z + 35) = 35z
y = 35z/(2z + 35) = z/(2z/35 + 1)
35z^2/(2z + 35) = 315z/(2z + 35) + 9z
35z^2 = 315z + 9z*(2z + 35)
35z^2 = 315z + 18z^2 + 315z
17z^2 = 630z
z=630/17
y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53
x = 5*630/(630/53 - 5)/53 = 5*630/((630/53 - 5)*53) = 5*630/365 = 630/73
1) ОДЗ X+1>0 3-x>0
x>-1 x<3
1/3<1⇒x+1≤3-x
2x≤2⇒x≤1 ответ х∈(-1 ;1]
2)log2(x(x-1))≤log2(2) ОДЗ х(х-1)>0⇒⇒x∈(-∞0)∨(1∞)
2>1⇒x(x-1)≤2
x²-x-2≤0
(x-2)(x+1)≤0⇒-1≤x≤2 ответ [-1 ;0)∨(1;2]