(x-3)/х - данная дробь (х-3+1)/(х+1) = (х-2)/(х+1) - новая дробь Так как по условию их разность равна 3/20, то составляем уравнение: (х-2)/(х+1) - (х-3)/ х = 3/20 приводим к общему знаменателю: 20х(х+1) и отбрасываем его, заметив, что х≠0, х≠-1 20х(х-2)-20(х+1)(х-3) = 3х(х+1) 20х²-40х-20х²+40х+60=3х²+3х 3х²+3х-60=0 | :3 х²+х-20=0 Д=1+80=81=9² x(1)=(-1+9)/2=4 => исходная дробь (4-3) / 4 = 1/4 x(2)=(-1-9)/2=-5 => исходная дробь (-5-3) / (-5) = -8/(-5) = 8/5>1 не подходит под условие задачи ответ: 1/4
Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у. Производная этой функции равна нулю пр х = 0. Подставив это значение в уравнение функции, получаем у = 1. Исследуем поведение производной вблизи точки х = 0. х 0.5 0 -0.5 у' -0.6875 0 0.6875. Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1. Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809. ответ при (х=+-3) : умакс = 1, умин = -809.
4х²+4х+1-6х-3≠0
4х²-2х-2≠0
2х²-х-1≠0
D=b²-4ac
D=1+8=9
x=2-3/4=-0,25
x=2+3/4=1,25
При любых выражений кроме х=-0,25 и х=1,25