К1, К2, К3, К4, К5 С3, С4, С5, С6 3 и 5 - простые числа, т. е. получаем комбинации К1-С3-К3 и К1-С5-К5. Поскольку карточка К1 только одна, объединяем эти две комбинации в одну: К3-С3-К1-С5-К5. Среди оставшихся С3 и С4 нет кратного К5. Это означает, что карточка К5 - обязательно крайняя. Дальше продолжаем расладывать в левую сторону. Кратным к К3 является С6: С6-К3-С3-К1-С5-К5. Делителем С6, помимо К3, является К2: К2-С6-К3-С3-К1-С5-К5. Кратным к К2 является С4: С4-К2-С6-К3-С3-К1-С5-К5. Делителем С4 является К4: К4-С4-К2-С6-К3-С3-К1-С5-К5. Сумма чисел на средних трёх картах: 6+3+3=12.
3·2^(4x)+6^(2x)-2·3^(4x)=0
3·2^(4x)+2^(2x)·3^(2x)-2·3^(4x)=0 разделим всё уравнение на 3^(4x)
3·(2\3)^(4x)+(2\3)^(2x)-2=0 введём замену переменной : пусть (2\3)^(2x)=y
3y²+y-2=0
D=1-4·3·(-2)=25
y1=(-1+5)\6=2\3
y2=(-1-5)\6=-1
возвращаемся к замене:
(2\3)^(2x)=y1 (2\3)^(2x)=-1 решений нет
(2\3)^(2x)=2\3
2x=1
x=1\2
ответ: 1\2