Пусть точка A(x,y,z) Так как она симметрична B(0,0,0) То середина отрезка AB лежит в данной плоскости и вектор AB коллинеарен вектору нормали {6,2,-9}, То есть точка (x/2, y/2, z/2) лежит в нашей плоскости 6x+2y-9z+242=0 и x=6t, y=2t, z=-9t. Подставляем и получаем 36t+4t+81t+242=0 => t=-2 Значит A(-12, -4, 18)
V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
Так как она симметрична B(0,0,0) То середина отрезка AB лежит в данной плоскости и вектор AB коллинеарен вектору нормали {6,2,-9},
То есть точка (x/2, y/2, z/2) лежит в нашей плоскости
6x+2y-9z+242=0
и x=6t, y=2t, z=-9t. Подставляем и получаем 36t+4t+81t+242=0 => t=-2
Значит A(-12, -4, 18)