Пирамида SABCD, ABCD - квадрат в основании, SH - высота, H - точка пересечения диагоналей квадрата. SH1 - высота треугольника SDC. H1 соединим s H. SH1 перпендикулярен DC, HH1 так же перпендикулярен DC, значит <SH1H - линейный угол двугранного угла SDCH, следовательно <SH1H = 60°.
SH перпендикулярен HH1, так как перпендикулярен плоскости основания, следовательно и любой линии, лежащей в этой плоскости. Из прямоугольного треугольника SHH1:
sin<HH1S = SH/SH1
SH1*sin60° = 4√3
SH1*√3/2 = 4√3
SH1 = 8
По теореме пифагора: HH1² = SH1² - SH²
HH1² = 64 - 48 = 16
HH1 = 4
Рассмотрим треугольники CHH1 и CAD. Они подобны (один угол общих, два остальных - соответственные углы при пересечении двух параллельных прямых третьей).
2HC = AC (диагонали квадрата точкой пересечения делятся на две равные части)
Значит: AC/HC = AD/HH1
2HC/HC = AD/HH1
AD = 2HH1
AD = 2*4 = 8
Sбок = Pосн*h, где h - апофема
Sбок = Pосн*SH1 = (4*8)*8 = 256
Sосн = AD² = 8² = 64
Sполн = Sбок + Sосн = 256 + 64 = 320
ответ: 320
1) a) 4+12x+9x2
4+12x+18
22+12x
2(11+6x)
б) 25-40х+16х2
25-40х+32
57-40х
г) -56а+49а*2+16
-56а+98а+16
42а+16
2(21а+8)
2) a) (y-1)(y+1) б) p^2-9 г) (3x-2)(3x+2) д) (3x)^2-2^2 е) a^2-3^2
y^2-1 (3x)^2-2^2 9x^2-4 a^2-9
в) 4^2-(5y^2) 9x^2-4
16-25y^2
4) a) a3-b3 б) 27a3+8b3
3(a-b) 81a+24b
3(27a+8b)