Обозначаем вместимость бассейна как условное число 1.
Поскольку оба насоса наполняют бассейн за 4 часа, то их общая скорость наполнения будет равна:
1 / 4 = 1/4 часть бассейна в час.
Скорость наполнения первого насоса составит:
1 / 12 = 1/12 часть бассейна в час.
Определяем скорость наполнения второго насоса.
Для этого от общей продуктивности работы отнимаем скорость работы второго насоса.
1/4 - 1/12 = 3/12 - 1/12 = 2/12 = 1/6 часть в час.
Значит он наполнит бассейн за:
1 / 1/6 = 1 * 6/1 = 6 часов.
6 ч.
Объяснение:
(a₂+1) / (a₁+1) = (a₃+13) / (a₂+1) {Запись говорит о том что это геометрическая прогрессия q=q}
Дальше каждый член арифметической прогрессии расписываем:
a₂=a₁+d
a₃=a₁+2d
a₁+a₁+d+a₁+2d=24
3a₁+3d=24
3(a₁+d)=24
a₁+d=8 {Получили из первого уравнения}
(a₁+d+1) / (a₁+1) = (a₁+2d+13) / (a₁+d+1) {Получили из второго уравнения}
Решаем систему уравнений:
a₁=8-d
(8-d+d+1) / (8-d+1) = (8-d+2d+13) / (8-d+d+1)
9 / (9-d) =(21+d) / 9
(21+d)(9-d)=81
189+9d-21d-d²=81
-d²-12d+108=0
ответ: d₁ = -18; d₂ = 6
По условию арифметическая прогрессия возрастающая, следовательно d=6
Проверка:
Для арифметической:
a₁=2
a₂=8
a₃=14
∑=24
Для геометрической:
a₁=3
a₂=9
a₃=27
q=3