1). 2х³-14х²+18х=2х*(х²-7х+9), где х²-7х+9 раскладываем на множители Д = 49-36=13>0 => 2корня х1\2 = 7+- корень из 13\2 х1=7корней из 13/2 х2= минус 7 корней из 13/2 ответ: -7корей из 13/2, 0, 7корей из 13/2
1. A) Выразим х из первого уравнения системы и подставим во второе: х=3+у 3(3+у)+у=5 9+3у+у=5 4у=-4 у=-1 Подставим найденное значение у в выраженное нами значение х: х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно. 3*2+(-1)=6-1=5 - верно. х=2, у=-1. Б) Выразим у из первого уравнения системы и подставим во второе: у=4-х² 2*(4-х²)-х=7 8-2х²-х=7 2х²+х-1=0 Д=1+8=9 х1=(-1+3):4=1/2 х2=(-1-3):4=-1 у=4-х² При х1=1/2, у1=4-1/4=3 целых 3/4 При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое). Подставляем: 4+(-2)=2 4-2=2 2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.
Решала методом сложения. По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы, сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное. В первом задании, например, я домножила первое уравнение на -3, чтобы далее и в первом, и во втором уравнении системы было 6х и -6х. Это сделано для того, чтобы при сложении этих уравнений иксы полностью уничтожились, и можно было решить их относительно У. Ну а потом по старинке: найденный У подставляем в любое из уравнений системы и получаем уже Х.
Д = 49-36=13>0 => 2корня
х1\2 = 7+- корень из 13\2
х1=7корней из 13/2 х2= минус 7 корней из 13/2
ответ: -7корей из 13/2, 0, 7корей из 13/2