(Аппарат элементарных преобразований графиков функций)
График функции можно получить из графика функции , то есть:
1. График смещаем на 1 вправо.
2. Отражаем его зеркально по оси значений (a.k.a. ординат).
3. Растягиваем его по оси значений в два раза.
Получаем фигуру 1.
Найдите точки пересечения графика этой функции с осями координат.
y=-2x+2
Сначала x=0, потом y=0.
От x=0 имеем y=2.
От y=0 имеем -2x+2=0 => x=1. Точка x=1,y=0.
Найдите значение функции, если значение аргумента равно -1.
При каком значении х функция принимает значение, равное 8?
-2x+2 = 8
-2x=6
x=-3
Принадлежит ли графику функции точка А(10;-18)?
Щас проверим. . Да. Принадлежит.
Найдите точку пересечения графика данной функции и функции y=4.
-2x+2 = 4
-x+1=2
-x=1
x=-1
Точка x=-1,y=4.
29.
б) в числителе выносим за скобку 5, получаем :
5(3b + 4c) / 10b
Сокращаем 5 и 10 на 5, получаем :
3b + 4c / 2b
г) В знаменателе выносим за скобку 6, получаем :
5x (y+2) / 6 (y + 2)
Сокращаем скобки (y+2) , получаем:
5x / 6
д) В знаменателе выносим за скобку a , получаем:
a - 3b / a(a-3b)
Сокращаем a-3b , получаем :
1 / a
30.
б) В числителе выносим 5 за скобку, а в знаменателе раскрываем формулу разности квадратов , получаем:
5(x - 3y) / (x-3y)(x+3y)
Сокращаем скобки (x-3y), получаем:
5 / x + 3y
г) В числителе выносим за скобку 6c , знаменатель не меняем, получаем:
6c(d-3) / (d-3)^2
Сокращаем скобки (d-3), получаем:
6c / d - 3
Формула разности квадратов :
x^2 - y^2 = (x-y) * (x+y)