Пусть первая бригада, работая отдельно, может убрать урожай за x дней, а вторая - за y дней. Тогда за 1 день первая бригада выполнит 1/ x часть работы, а вторая - 1/y. Работая совместно, за 1 день они уберут (1/x + 1/y) часть урожая, которая по условию задачи равна 1/12. Таким образом,ВЛОЖЕНИЕ №1.
Далее, за восемь дней совместной работы две бригады уберут 8(1/x + 1/y) часть урожая, а за последующие семь дней вторая бригада выполнит 7/y часть работы. В результате будет выполнена вся работа. Следовательно,ВЛОЖЕНИЕ №2.
Чтобы решить систему уравнений (2)-(3) подставим из уравнения ВЛОЖЕНИЕ №4. Мы получим ВЛОЖЕНИЕ №3.
откуда У=21. Тогда Х=28 . Таким образом, первая бригада, работая отдельно, могла бы убрать урожай за 28 дней.
ответ: 28
8x^3+4x^2+2x-4x^2-2x-1-8x^3+12x
сокращаем.
получаем в итоге
12x-1
подставляем x.
12*0.5-1
6-1
в ответ 5