М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Stepanovayu2405
Stepanovayu2405
30.05.2021 00:45 •  Алгебра

Выполните умножение: (7 класс ) (а+3)(а-4)=? (а-1)(6-а) =? (-а-1)(а+7)=? (5+а) (-2-а) =?

👇
Ответ:
natalyakulesch
natalyakulesch
30.05.2021
Принимайте решение=)))) )))) ))))
Выполните умножение: (7 класс ) (а+3)(а-4)=? (а-1)(6-а) =? (-а-1)(а+7)=? (5+а) (-2-а) =?
4,6(92 оценок)
Открыть все ответы
Ответ:
nastyapuhova1
nastyapuhova1
30.05.2021
На заводе производится сплав, в котором на 2 кг алюминия приходится 1 кг никеля.      2 + 1 = 3 кг сплава.

Первая шахта: 60 рабочих; 5 рабочих часов в день;
           2 кг алюминия или 3 кг никеля 1 рабочий за 1 час.
Общее количество рабочих часов в день:  60*5 = 300 часов.
1 час / 3 кг = 1/3 часа нужно, чтобы один рабочий добыл 1 кг никеля.
Для 3 кг сплава требуется
1/3 часа на добычу 1 кг никеля и
1 час на добычу  2 кг алюминия.
1 час + 1/3 часа =  1 \frac{1}{3} = \frac{4}{3}  часа.

Пропорция
\frac{4}{3}  часа      -     3 кг сплава
300 часов   -     Х кг сплава
X = 300*3: \frac{4}{3} =900* \frac{3}{4} =675 кг сплава
------------------------------------------
Вторая шахта: 260 рабочих, 5 рабочих часов в день,
              3 кг алюминия или 2 кг никеля 1 рабочий за 1 час.
Общее количество рабочих часов в день:  260*5 = 1300 часов.
1 час / 2 кг = 1/2 часа, чтобы один рабочий добыл 1 кг никеля.
1 час / 3 кг = 1/3 часа, чтобы один рабочий добыл 1 кг алюминия.
Для 3 кг сплава требуется 
1/2 часа для добычи  1 кг никеля и
1/3 часа * 2 кг = 2/3 часа для добычи 2 кг алюминия.
1/2 часа + 2/3 часа =  \frac{3+4}{6} = \frac{7}{6}  часа.

Пропорция
\frac{7}{6}  часа      -     3 кг сплава
1300 часов    -     Х кг сплава
X = 1300*3: \frac{7}{6} =3900* \frac{6}{7} =3342 \frac{6}{7}  кг сплава

Обе шахты могут обеспечить завод металлом для получения
675 + 3342 \frac{6}{7}=4017 \frac{6}{7} кг сплава

ответ: 4017 \frac{6}{7}  кг сплава.
4,7(38 оценок)
Ответ:
historican
historican
30.05.2021
решения системы подстановки алгебраического сложения.

Алгоритмы и примеры решения системы уравнений:

Алгоритм решения системы линейных уравнений подстановки:

1. Выбрать одно уравнение (лучше выбирать то, где числа меньше) и выразить из него одну переменную через другую, например, Х через У. (можно и У через Х) . 2. Полученное выражение подставить вместо соответствующей переменной в другое уравнение. Таким образом, у нас получится линейное уравнение с одной неизвестной. 3. Решаем полученное линейное уравнение и получаем решение. 4. Подставляем полученное решение в выражение, полученное в первом пункте, получаем вторую неизвестную из решения. 5. Выполнить проверку полученного решения.

Пример

Решить систему уравнений: {Х+2*У =12{2*Х-3*У=-18

Решение: 1. Из первого уравнения данной системы выражаем переменную Х. Имеем Х= (12 -2*У) ; 2. Подставляем это выражение во второе уравнение, получаем 2*Х-3*У=-18; 2*(12 -2*У) – 3*У = -18; 24 – 4*У– 3*У = -18;

3. Решаем полученное линейное равнение: 24 – 4У – 3*У =-18; 24-7*У =-18; -7*У = -42; У=6;

4. Подставляем полученный результат в выражение, полученное в первом пункте. Х= (12 -2*У) ; Х=12-2*6 = 0; Х=0;

5. Проверяем полученное решение, для этого подставляем найденные числа в исходную систему. {Х+2*У=12;{2*Х-3*У=-18;{0+2*6 =12;{2*0-3*6=-18;{12 =12;{-18=-18;

Получили верные равенства, следовательно, мы правильно нашли решение.

ответ: (0,6)

Алгоритм решения алгебраического сложения

Алгоритм решения системы линейных уравнений с двумя неизвестными сложения.

1. Если требуется, путем равносильных преобразований уравнять коэффициенты при одной из неизвестных переменных в обоих уравнениях. 2. Складывая или вычитая полученные уравнения получить линейное уравнение с одним неизвестным 3. Решить полученное уравнение с одним неизвестным и найти одну из переменных. 4. Подставить полученное выражение в любое из двух уравнений системы и решить это уравнение, получив, таким образом, вторую переменную. 5. Сделать проверку решения.

Пример решения алгебраического сложения

Для большей наглядности решим сложения следующую систему линейных уравнений с двумя неизвестными:

{3*Х + 2*У = 10;{5*Х + 3*У = 12;

Так как, одинаковых коэффициентов нет ни у одной из переменных, уравняем коэффициенты у переменной у.

Для этого умножим первое уравнение на три, а второе уравнение на два.

{3*Х+2*У=10 |*3{5*Х + 3*У = 12 |*2

Получим следующую систему уравнений: {9*Х+6*У = 30;{10*Х+6*У=24;

Теперь из второго уравнения вычитаем первое.

Приводим подобные слагаемые и решаем полученное линейное уравнение. 10*Х+6*У – (9*Х+6*У) = 24-30; Х=-6;

Полученное значение подставляем в первое уравнение из нашей исходной системы и решаем получившееся уравнение. {3*(-6) + 2*У =10;{2*У=28; У =14;

Получилась пара чисел Х=6 и У=14.

Проводим проверку.

Делаем подстановку. {3*Х + 2*У = 10;{5*Х + 3*У = 12;{3*(-6) + 2*(14) = 10;{5*(-6) + 3*(14) = 12;{10 = 10;{12=12;

Как видите, получились два верных равенства, следовательно, мы нашли верное решение. ответ: (6, 14)

4,5(36 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ