М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
КамиллаОк
КамиллаОк
22.04.2022 17:43 •  Алгебра

Объем куба равен 27 см3(кубических). найти длину ребра куба и площадь полной поверхности куба.(с решением) решите уравнение 10х = 10000000

👇
Ответ:
nobos9n
nobos9n
22.04.2022
Обьем куба а^3
значит длинна ребра куба а=3
S = 6 a^2 = 6·3^2 = 54
х=1000000
4,4(63 оценок)
Открыть все ответы
Ответ:
ExKise
ExKise
22.04.2022
Современная география - это многоотраслевая наука, включающая океанологию, гидрометеорологию, гидрологию, биогеографию, геоморфологию, геодезию и картографию, экологию, социальную и экономическую географию и др. Уже один только этот перечень показывает обширность интересов географической науки и ее решать самые разнообразные и сложные проблемы, охватывающие все стороны природных и социальных явлений.География - многоотраслевая наука. Это обусловлено сложностью и многообразием главного объекта ее исследования - географической оболочки Земли. Располагаясь на границе взаимодействия внутриземных и внешних (в том числе космических) процессов, географическая оболочка включает в себя верхние слои твердой коры, гидросферу, атмосферу и рассеянное в них органическое вещество. В зависимости от положения Земли на эклиптической орбите и благодаря наклону ее оси вращения различные участки земной поверхности получают разное количество солнечного тепла, дальнейшее перераспределение которого в свою очередь обусловлено неравномерным по широте соотношением суши и моря.Современное состояние географической оболочки следует рассматривать как результат ее длительной эволюции - начиная с возникновения Земли и становления ее на планетный путь развития.Правильное понимание процессов и явлений различного пространственно-временн у го масштаба, протекающих в географической оболочке, требует по меньшей мере многоуровневого их рассмотрения, начиная с глобального - общепланетарного. Вместе с тем исследование процессов общепланетарного характера до последнего времени считалось прерогативой геологических наук. В общегеографическом синтезе информация этого уровня практически не использовалась, а если и привлекалась, то довольно пассивно и ограниченно. Однако отраслевое подразделение естественных наук достаточно условно и не имеет четких границ. Объект же исследований у них общий - Земля и ее космическое окружение. Изучение различных свойств этого единого объекта и процессов, протекающих в нем, потребовало разработки различных методов исследований, что в значительной мере и предопределило их отраслевое подразделение. В этом плане географическая наука имеет больше преимуществ перед другими отраслями знаний, т.к. обладает наиболее развитой инфраструктурой, позволяющей вести всестороннее изучение Земли и окружающего ее пространства.
4,6(32 оценок)
Ответ:
soymapoIina
soymapoIina
22.04.2022
(1) Основное тригонометрическое тождествоsin2(α) + cos2(α) = 1(2) Основное тождество через тангенс и косинус1 + tg^2(\alpha) = \frac{1}{cos^2(\alpha)}1+tg​2​​(α)=​cos​2​​(α)​​1​​(3) Основное тождество через котангенс и синус1 + ctg^2(\alpha) = \frac{1}{sin^2(\alpha)}1+ctg​2​​(α)=​sin​2​​(α)​​1​​(4) Соотношение между тангенсом и котангенсомtg(α)ctg(α) = 1(5) Синус двойного углаsin(2α) = 2sin(α)cos(α)(6) Косинус двойного углаcos(2α) = cos2(α) – sin2(α) = 2cos2(α) – 1 = 1 – 2sin2(α)(7) Тангенс двойного углаtg(2α) =  2tg(α)1 – tg2(α)(8) Котангенс двойного углаctg(2α) =ctg2(α) – 1  2ctg(α)(9) Синус тройного углаsin(3α) = 3sin(α)cos2(α) – sin3(α)(10) Косинус тройного углаcos(3α) = cos3(α) – 3cos(α)sin2(α)(11) Косинус суммы/разностиcos(α±β) = cos(α)cos(β) ∓ sin(α)sin(β)(12) Синус суммы/разностиsin(α±β) = sin(α)cos(β) ± cos(α)sin(β)(13) Тангенс суммы/разностиtg(\alpha\pm\beta) = \frac{tg(\alpha) ~ \pm ~ tg(\beta)}{1 ~ \mp ~ tg(\alpha)tg(\beta)}tg(α±β)=​1 ∓ tg(α)tg(β)​​tg(α) ± tg(β)​​(14) Котангенс суммы/разностиctg(\alpha\pm\beta) = \frac{-1 ~ \pm ~ ctg(\alpha)ctg(\beta)}{ctg(\alpha) ~ \pm ~ ctg(\beta)}ctg(α±β)=​ctg(α) ± ctg(β)​​−1 ± ctg(α)ctg(β)​​(15) Произведение синусовsin(α)sin(β) = ½(cos(α–β) – cos(α+β))(16) Произведение косинусовcos(α)cos(β) = ½(cos(α+β) + cos(α–β))(17) Произведение синуса на косинусsin(α)cos(β) = ½(sin(α+β) + sin(α–β))(18) Сумма/разность синусовsin(α) ± sin(β) = 2sin(½(α±β))cos(½(α∓β))(19) Сумма косинусовcos(α) + cos(β) = 2cos(½(α+β))cos(½(α–β))(20) Разность косинусовcos(α) – cos(β) = –2sin(½(α+β))sin(½(α–β))(21) Сумма/разность тангенсовtg(\alpha) \pm tg(\beta) = \frac{sin(\alpha\pm\beta)}{cos(\alpha)cos(\beta)}tg(α)±tg(β)=​cos(α)cos(β)​​sin(α±β)​​(22) Формула понижения степени синусаsin2(α) = ½(1 – cos(2α))(23) Формула понижения степени косинусаcos2(α) = ½(1 + cos(2α))(24) Сумма/разность синуса и косинусаsin(\alpha) \pm cos(\alpha) = \sqrt{2}sin(\alpha\pm\frac{\pi}{4})sin(α)±cos(α)=√​2​​​sin(α±​4​​π​​)(25) Сумма/разность синуса и косинуса с коэффициентамиAsin(\alpha) \pm Bcos(\alpha) = \sqrt{A^2+B^2}(sin(\alpha \pm arccos(\frac{A}{\sqrt{A^2+B^2}})))Asin(α)±Bcos(α)=√​A​2​​+B​2​​​​​(sin(α±arccos(​)))(26) Основное соотношение арксинуса и арккосинусаarcsin(x) + arccos(x) = π/2(27) Основное соотношение арктангенса и арккотангенсаarctg(x) + arcctg(x) = π/2

Формулы общего вида(1) Формула понижения nй четной степени синусаsin^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} (-1)^{\frac{n}{2}-k} C_{k}^{n}cos((n-2k)\alpha)sin​n​​(α)=​2​n​​​​C​​2​​n​​​n​​​​+​2​n−1​​​​1​​∑​k=0​​2​​n​​−1​​(−1)​​2​​n​​−k​​C​k​n​​cos((n−2k)α)(2) Формула понижения nй четной степени косинусаcos^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} C_{k}^{n}cos((n-2k)\alpha)cos​n​​(α)=​2​n​​​​C​​2​​n​​​n​​​​+​2​n−1​​​​1​​∑​k=0​​2​​n​​−1​​C​k​n​​cos((n−2k)α)(3) Формула понижения nй нечетной степени синусаsin^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} (-1)^{\frac{n-1}{2}-k} C_{k}^{n}sin((n-2k)\alpha)sin​n​​(α)=​2​n−1​​​​1​​∑​k=0​​2​​n−1​​​​(−1)​​2​​n−1​​−k​​C​k​n​​sin((n−2k)α)(4) Формула понижения nй нечетной степени косинусаcos^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} C_{k}^{n}cos((n-2k)\alpha)cos​n​​(α)=​2​n−1​​​​1​​∑​k=0​​2​​n−1​​​​C​k​n​​cos((n−2k)α)
4,7(28 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ