Объяснение:
А) Подставляем везде места х цифру 0
3×0/0^2-3×0 = 0
1) 3×0=0
2) 0^2=0
3) 3×0=0
ответ: 0
Подставляем цифру 13 места х
3×13/13^2-3×13= 39/169-39 = 39/130 = 0.3 или 3/10
1) 3×13=39
2) 3^2=169
3) 169-39=130
4) 39:130=0.3 , а если в дробях то 39/130 сокращаем на 13=3/10
ответ: 0.3 или можно также записать 3/10
Б) Подставляем вместо х цифру 3
12(3-3)/24=12/24=2
1) Всегда сначала решаем то что в скобках (3-3) =0
2) Остаётся 12/24 здесь сократим на 12 будет =2
ответ: 2
Подставляем 5 вместо х
12(5-3)/24= 12×2/24=24/24=1
1) Сначала то что в скобках (5-3)=2
2) 12×2=24
3) 24/24=1
ответ:1
Область определения функции — это множество всех значений аргумента (переменной x). Другими словами, нам нужно найти при каких (х), функция возможна.
1. D(x)=(-∞;+∞) Какой бы мы (Х) не подставили, функция будет возможна.
2. D(x)=(-∞;+∞) Какой бы мы (Х) не подставили, функция будет возможна.
3.Когда есть дробь, должно выполнятся условие, что знаменатель ≠ 0
х-5≠0 х≠5
D(x)=(-∞;5)∪(5+∞);
4. Когда есть корень, есть правило, что под корнем стоит выражение, которое 0, откуда
х-50 х5
D(x)=[5;+∞)
5. Когда есть дробь, нельзя чтобы знаменатель был равен 0, и когда есть корень, есть правило, что под корнем стоит выражение, которое>0, откуда
4-х>0
-х>-4 домножим на (-1) и знаки поменяются
х<4
D(x)=(-∞;4)
6.Когда есть дробь, нельзя чтобы знаменатель был равен 0, откуда
-5≠0 ≠5
х₁≠√5
х₂≠-√5
D(x)=(-∞;-√5)∪(-√5;√5)∪(√5;+∞);
7. Когда есть дробь, нельзя чтобы знаменатель был равен 0, откуда
+4≠0 Выражение под квадратом всегда неотрицательное, значит х=R.
При любом значении (х), выражение +4≠0 не будет равно 0.
D(x)=(-∞;+∞)
8. Когда есть дробь, нельзя чтобы знаменатель был равен 0:
IxI-3≠0
IxI≠3
х₁≠3
х₂≠-3
D(x)=(-∞;-3)∪(-3;3)∪(3;+∞);
9. Когда есть дробь, нельзя чтобы знаменатель был равен 0:
IxI+5≠0
IxI≠-5, откуда x=R, тк любое выражение под модулем≥0
D(x)=(-∞;+∞) Другими словами, знаменатель при любом (х) не обернется в 0.
10. Когда есть корень, должно выполнятся условие, что выражение под нем ≥0. Когда есть дробь, должно выполнятся условие, что знаменатель ≠ 0. Составим систему:
x-1≥0
x-10≠0
x≥1
x≠10
Запишем область определения:
D(x)=[1;10)(10+∞)
х+6 2 число
х*(х+6) их произведение
х*(х+6)=187
х²+6х-187=0
D=6²-4*1*(-187)=36+748=784 x1=-6+28)/2=22/2=11 x2=(-6-28)/2=-17
-17 не соответствует условию задачи (не натур число)
11- 1 число 11+6=17- 2 число