Т.к. суммы противолежащих сторон выпуклого четырехугольника, описанного около окружности, равны, то сумма боковых сторон AD + BC = 1+ 3 = 4 равна сумме оснований трапеции AB + DC. Итак, сумма оснований трапеции равна 4. Поскольку средняя линия трапеции равна полусумме оснований, то она равна 4 : 2 = 2
ПАНОРАМА - 8 букв РАНА Первая буква "Р" может быть выбрана из 8 букв лишь одним т.к. буква "Р" в слове панорама одна. Вероятность того, что первой буквой в слове "РАНА" будет "Р" равна 1/8. Вторая буква "А" из оставшихся 7 букв может быть выбрана т.к. букв "А" есть три среди оставшихся семи. Вероятность того, что второй буквой в слове "РАНА" будет буква "А" равна 3/7. Буква "Н" из оставшихся 6-ти букв может быть выбрана одним а вероятность того, что третьей буквой будет выбрана "Н" равна 1/6. Четвёртая буква "А" из оставшихся 5-ти букв может быть выбрана двумя т.к. букв "А" среди оставшихся пяти теперь есть только две. Вероятность того, что четвёртой буквой будет "А" равна 2/5. По правилу произведения вероятность того, что получится слово "РАНА" равна 1/8*3/7*1/6*2/5=1/280≈0,00357...≈0,004
ПАНОРАМА - 8 букв РАНА Первая буква "Р" может быть выбрана из 8 букв лишь одним т.к. буква "Р" в слове панорама одна. Вероятность того, что первой буквой в слове "РАНА" будет "Р" равна 1/8. Вторая буква "А" из оставшихся 7 букв может быть выбрана т.к. букв "А" есть три среди оставшихся семи. Вероятность того, что второй буквой в слове "РАНА" будет буква "А" равна 3/7. Буква "Н" из оставшихся 6-ти букв может быть выбрана одним а вероятность того, что третьей буквой будет выбрана "Н" равна 1/6. Четвёртая буква "А" из оставшихся 5-ти букв может быть выбрана двумя т.к. букв "А" среди оставшихся пяти теперь есть только две. Вероятность того, что четвёртой буквой будет "А" равна 2/5. По правилу произведения вероятность того, что получится слово "РАНА" равна 1/8*3/7*1/6*2/5=1/280≈0,00357...≈0,004
Т.к. суммы противолежащих сторон выпуклого четырехугольника, описанного около окружности, равны, то сумма боковых сторон AD + BC = 1+ 3 = 4 равна сумме оснований трапеции AB + DC. Итак, сумма оснований трапеции равна 4. Поскольку средняя линия трапеции равна полусумме оснований, то она равна 4 : 2 = 2