Не считая 1 и само число N остается 8 делителей. Если оно делится на 5 и 9 оно делится на 5 ,3,9,15,45. Понятно что в разложении этого числа на простые множители будут простые множители 3 и 5 . Предположим что есть еще хотя бы 1 простой множитель (отличный от 3 и 5) равный p то число еще будет иметь делители 3p 5p 9p p Но тогда уже будет 9 делителей. А если есть еще простые делители кроме p ,то и подавно. Таким образом эти числа имеют структуру представления: N=3^k * 5^m k>=2 не трудно догадаться из комбинаторных соображений ,что число делителей числа: 3^k*5^m число его делителей равно: (k+1)*(m+1) (k+1)*(m+1)=10 (по условию) k>=2 m>=1 то возможно: k=4 m=1 то есть число: 3^4*5=405 Других чисел нет. ответ:405
n⁴-25n²+144=0
n²=t>0
t²-25t+144=0 D=49
t₁=9 n²=9 n₁=3 n₂=-3
t₂=16 n²=16 n₃=4 n₄=-4.
ответ: n₁=3 n₂=-3 n₃=4 n₄=-4.