Находим производную. Она равна 12х²-6х=6х(2х-1)
Приравниваем производную к нулю. Получим два корня х=0 и х=0,5
Разбиваем на промежутки числовую ось (-∞;0)(0;0,5)(0,5;+∞)
С метода интервалов устанавливаем знак на каждом интервале.
на первом интервале и на последнем получились знаки плюс, на втором минус, значит, точка х= о- точка максимума, т.к. при переходе через нее производная меняет знак с плюса на минус, а сам максимум равен 4-0³-3*0²=0,
а х=0,5 - точка минимума, т.к. при переходе через нее производная меняет знак с минуса на плюс. Значение экстремума равно
4*(0,5)³-3*(0,5)²=0,5²*(4*0,5-3)=-0,25
Дана функция y=x^2-x^3.
Для определения промежутков возрастания и убывания функции и
точек экстремума находим производную заданной функции.
y' = 2x -3x² = x(2 - 3x). Приравниваем нулю:
x(2 - 3x) = 0. Отсюда первый корень х = 0.
Далее: 2 - 3x = 0, x = 2/3.
Найдены критические точки, которые могут быть экстремумами:
х_1 = 0 и х_2 = √(2/3).
Определяем их свойства по знакам производной:
х = -1 0 0,5 (2/3) 1
y' = -5 0 0,25 0 -1 . Получаем ответ:
а) промежуток возрастания (производная положительна) (0; 2/3),
промежутки убывания функции (-∞; 0) и ((2/3); +∞).
б) точки экстремума: максимум ((2/3); 0,148148) и минимум (0; 0).
Уравнение пряммой, проходящей через две точки (х1;y1) и (x2;y2) имеет вид:
(x-x1)/(x2-x1)=(y-y1)/(y2-y1)
уравнение прямой проходящей через точки А(-2;3) и В (2;6):
(x-2)/(-2-2)=(y-6)/(3-6);
(x-2)/(-4)=(y-6)/(-3)
3(x-2)=4(y-6)
3x-6=4y-24
3x-4y-6+24=0
3x-4y+18=0
ответ: 3x-4y+18=0