1) 35Cos x + 7(Sin^2x + Cos^2x) = 6 35Cosx + 7*1 = 6 35Cosx = -1 Cosx = -1/35 x = +-arcCos(-1/35) + 2πk , k Є Z 2) 2x/7 = +-arcCos(3/4) +2πk , k Є Z x = +-7/2arcCos)3/4) + 2πk , k Є Z 3)Sinx(5Sinx +25) = 0 Sinx = 0 или 5Sinx +25 = 0 x = πk , k Є Z нет решений 4)Sinx = t t^2 - 4t -5 = 0 по т. Виета t1= -1 и t2 = 5 a)Sinx = -1 б) Sinx = 5 x = -π/2 + 2πk , k Є Z нет решений.
Квадратные трехчлены легко раскладываются на множители через корни, найденные по т.Виета (устно) дроби нельзя сокращать, не записав ОДЗ... на квадратный трехчлен с отрицательным дискриминантом можно сократить дробь, т.к. он не принимает нулевых значений (корней нет), знак неравенства при этом не изменится, т.к. этот квадратный трехчлен может принимать только положительные значения: x²+4x+5 ---парабола, ветви вверх)) корень (-3) имеет кратность 2 (четную), т.е. при переходе через этот корень знак выражения не меняется...
X²+7x+12=(x+4)(x+3) x1+x2=-7 U x1*x2=12⇒x1=-4 u x2=-3 x²+6x+8=(x+4)(x+2) x1+x2=-6 U x1*x2=8⇒x1=-4 U x2=-2 x²+8x+15=(x+5)(x+3) x1+x2=-8 U x1*x2=15⇒x1=-5 U x2=-3 x²+7x+10=(x+5)(x+2) x1+x2=-7 U x1*x2=10⇒x1=-5 U x2=-2 x²+6x+9=(x+3)²
(x+4)(x+3)²/[(x+4)(x+2)]+(x+5)(x+3)²/[(x+5)(x+2)] -(x+1)²(x+3)²≤0 (x+3)²/(x+2)+(x+3)²/(x+2) -(x+1)²(x+3)²≤0,x≠-4 U x≠-5 2(x+3)²/(x+2)-(x+1)²(x+3)²≤0 (x+3)²(2-(x+2)(x+1)²)/(x+2)≤0 (x+3)²(2-x³-2x²-2x²-4x-x-2)/(x+2)≤0 (x+3)²(-x³-4x²-5x)/(x+2)≤0 (x+3)²*x*(x²+4x+5)/(x+2)≥0 x²+4x+5>0 при любом х,т.к.D<0⇒ (x+3)²*x/(x+2)≥0 x=-3 x=0 x=-2 + + _ + [-3](-2)[0] x∈(-∞;-5) U (-5;-4) U (-4;-2) U [0;∞)
35Cosx + 7*1 = 6
35Cosx = -1
Cosx = -1/35
x = +-arcCos(-1/35) + 2πk , k Є Z
2) 2x/7 = +-arcCos(3/4) +2πk , k Є Z
x = +-7/2arcCos)3/4) + 2πk , k Є Z
3)Sinx(5Sinx +25) = 0
Sinx = 0 или 5Sinx +25 = 0
x = πk , k Є Z нет решений
4)Sinx = t
t^2 - 4t -5 = 0
по т. Виета t1= -1 и t2 = 5
a)Sinx = -1 б) Sinx = 5
x = -π/2 + 2πk , k Є Z нет решений.