ОДЗ: подкоренное значение должно быть больше либо равно нулю. Т.к. корни умножаются, нужно учитывать условия для каждого. Составим систему неравенств и решим ее. Пересечение двух условий дает решение . ответ: х∈[1; ∞).
Вспомним предназначение и смысл формул сокращенного умножения. Ранее мы изучали и повторили достаточно трудоемкую операцию умножения многочленов, ее сложность заключается в том, что многочлен – это сумма одночленов, и для умножения нужно каждый член первого многочлена умножить на каждый член второго многочлена. В результате получаем достаточно большой многочлен, который нужно привести к стандартному виду. Формулы сокращенного умножения как раз упрощают операцию умножения многочленов.Приведем некоторые формулы: – квадрат суммы (разности); – разность квадратов; – разность кубов; – сумма кубов; называют неполным квадратом суммы; называют неполным квадратом разности;Отличие последних двух выражений от полного квадрата состоит в том, что в полном квадрате есть удвоенное произведение выражений, а в неполном – просто их произведение.
Примем вклад за 1. Если вклад увеличится на 10%, то он составит по отношению к первоначальному: 100% + 10% = 110% 110% = 1,1 Значит, размер вклада должен стать больше 1,1.
При увеличении вклада на 3%, к концу года вклад составит: 100% + 3% = 103% 103% = 1,03
1 * 1,03 = 1,03 - размер вклада через 1 год. 1,03 * 1,03 = 1,0609 - размер вклада через два года. 1,0609 * 1,03 ≈ 1,093 - размер вклада через три года. 1,093 * 1,03 ≈ 1,126 - размер вклада через четыре года. 1,126 > 1.1 ответ: через четыре года вклад вырастет более чем на 10%.
Пересечение двух условий дает решение
ответ: х∈[1; ∞).