√2 cos (x- pi/4) = sin x + cos x
sin x = sqrt(3)/2
x=(-1)^k * pi/3 + 2pik, k in Integers
√2 sin (pi/4-x) = cos x - sin x
cos x = -1/2
x=+- 2pi/3+pi n, n in Integers
sin (45 градусов - a)=1/√2*(cos x - sin x)
cos (x- pi/4) =1/√2(sin x + cos x)
.
1° = pi/180 радиан ~ 0,017453293 радиан
1° = 1/360 оборота ~ 0,002777 оборота
1° = 400/360 градов ~ 1,111111 градов
Соотношение радиана с другими единицами измерения углов описывается формулой:
* 1 радиан = 1/2π оборотов = 180/π градусов = 200/π градов
Очевидно, 180° = π. Отсюда вытекает тривиальная формула пересчёта из градусов, минут и секунд в радианы и наоборот.
α[рад] = (π / 180) × α[°]
α[°] = (180 / π) × α[рад]
где: α[рад] — угол в радианах, α[°] — угол в градусах
1 рад ≈ 57,295779513° ≈ 57°17′44,806″
√2 cos (x- pi/4) = sin x + cos x
Уравнение перепишется как sin x = sqrt(3)/2
x=(-1)^k * pi/3 + 2pik, k in Integers
√2 sin (pi/4-x) = cos x - sin x
cos x = -1/2
x=+- 2pi/3+pi n, n in Integers
sin (45 градусов - a)=1/√2*(cos x - sin x)
cos (x- pi/4) =1/√2(sin x + cos x)
Разделите друг на друга выражения и все получится.