Функция возрастает на всей числовой оси (-беск; +беск).
График этой функции обычная прямая вида: у=kx+b.
Доказать возрастание можно оч. просто:
Возьмем x1 и х2 такие, что x2>x1
Подставим их в исходную функцию:
у(х1)=3/2*х1+19/2
у(х2)=3/2*х2+19/2
Очевидно, что при таким образом заданных х1 и х2 выолняется след. неравенство:
3/2*х1 < 3/2*х1
а следовательно выполняется и неравенство:
3/2*х1+19/2 < 3/2*х2+19/2, что то же самое, что и : у(х1) < у(х2).
Поскольку х1 и х2 были выбраны произвольно, то это такое неравенство выполняется для любого х, следовательно функция возрастает на всей числовой оси.
Исходя из этого сравиниваем:
f(-конень из 3)<f(-конень из 2).
Конец:)
Объяснение:
1) а) (x-1)(x-3)>0
Допустим (x-1)(x-3)=0
x-1=0; x₁=1
x-3=0; x₂=3
Возьмём пробную точку на промежутке (-∞; 1) для определения знака функции, например, 0:
(0-1)(0-3)=-1·(-3)=3; 3>0
+ - +
°°>x
1 3
ответ: x∈(-∞; 1)∪(3; +∞).
б) (x+2)(x-5)<0
Допустим (x+2)(x-5)=0
x+2=0; x₁=-2
x-5=0; x₂=5
Пробная точка: 0.
(0+2)(0-5)=-2·5=-10; -10<0
- + -
°°>x
-2 5
ответ: x∈(-2; 5).
в) (x+9)(x+1)(x-11)>0
Допустим (x+9)(x+1)(x-11)=0
x+9=0; x₁=-9
x+1=0; x₂=-1
x-11=0; x₃=11
Пробная точка: 0.
(0+9)(0+1)(0-11)=9·1·(-11)=-99; -99<0
- + - +
°°°>x
-9 -1 11
ответ: x∈(-9; -1)∪(11; +∞).
г) x(x+8)(x-17)≤0
Допустим x(x+8)(x-17)=0
x₁=0
x+8=0; x₂=-8
x-17=0; x₃=17
Пробная точка: 2.
2(2+8)(2-17)=2·10·(-15)=10·(-30)=-300; -300<0
+ - + -
...>x
-8 0 17
ответ: x∈(-∞; -8]∪[0; 17].
2) а) (x+3)(x-8)(x-20)>0
Допустим (x+3)(x-8)(x-20)=0
x+3=0; x₁=-3
x-8=0; x₂=8
x-20=0; x₃=20
Пробная точка: 0.
(0+3)(0-8)(0-20)=3·(-8)·(-20)=-24·(-20)=480; 480>0
- + - +
°°°>x
-3 8 20
ответ: x∈(-3; 8)∪(20; +∞).
б) x(x+10)(x-3)≤0
Допустим x(x+10)(x-3)=0
x₁=0
x+10=0; x₂=-10
x-3=0; x₃=3
Пробная точка: 2.
2(2+10)(2-3)=2·12·(-1)=-24; -24<0
+ - + -
...>x
-10 0 3
ответ: x∈(-∞; -10]∪[0; 3].
a) 3,3a
б)2b^2-18ab^2
В)1a-14ав