На данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходится иметь дело практически во всех разделах высшей математики.
Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени: без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.
В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:
Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения
Но как бы ни обозначались переменные, принципы, методы и решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце-концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.
Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким::
P = 2(l + b) = 40
2l + 2b = 40
2l = 40 - 2b = 2(20 - b)
l = 20 - b
S1 = l*b = (20 - b)*b = 20b - b^2
Изменим размеры по условию, получаем
длина = (l-3) см = 20 - b - 3 = 17 - b
ширина = (b + 6) см
Площадь нового прямоугольника
S2 = (l-3)* (b + 6) = (20 - b - 3)*(b + 6) = (17 - b)*(b + 6) = 17b - b^2 + 102 - 6b = 11b - b^2 + 102
S2 = S1 + 3
20b - b^2 + 3 = 11b - b^2 + 102
20b - b^2 - 11b + b^2 = 102- 3
9b = 99
b = 11 см
l = 20 - b = 20 - 11 = 9 см
S1 = l*b = 11*9 = 99 см^2
Проверка: l = 9-3=6 см
b = 11+6 = 17 см
S2 = 6*17=102 см^2
S2 - S1 = 102 - 99 = 3 см^2
ответ: площадь первоначального прямоугольника 99 см^2.