Объяснение:
Т.к. в условии сказано, что никакие две девочки не подарили валентинки одинаковому количеству мальчиков, то все девочки подарили разное количество валентинок. Причём одна и та же девочка не может подарить валентинку одному и тому же мальчику более одного раза, тогда:
Первая девочка подарила 1 валентинку, вторая девочка подарила 2 валентинки, третья 3 валентинки...
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120 - валентинок было подарено, соответственно, мальчиков, которые получили валентинки было 120, а девочек, которые их дарили 15
Если бы мы взяли
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 136 - это уже получилось бы, что 136 мальчиков получили валентинки и 16 девочек их дарили, а всего детей в школе 143
136 + 16 > 143 неверно
При таблицы квадратов и кубов
(Проще некуда, в таблице находишь число которое тебе необходимо, а далее сбоку смотришь разряд десяток а сверху разряд единиц)
Разложение подкоренного числа на простые множители
(Пусть из натурального числа a извлекается корень n-ой степени, и его значение равно b. В этом случае верно равенство a=bn. Число b как любое натуральное число можно представить в виде произведения всех своих простых множителей p1, p2, …, pm в виде p1·p2·…·pm, а подкоренное число a в этом случае представляется как (p1·p2·…·pm)n).
Поразрядное нахождение значения корня
(В общем случае под корнем находится число, которое при разобранных выше приемов не удается представить в виде n-ой степени какого-либо числа. Но при этом бывает необходимость знать значение данного корня, хотя бы с точностью до некоторого знака. В этом случае для извлечения корня можно воспользоваться алгоритмом, который позволяет последовательно получить достаточное количество значений разрядов искомого числа.)
P.S. Всё что в скобках - объяснения
2.b3=-28
3.
4.