М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Forkier
Forkier
08.02.2020 04:16 •  Алгебра

Катер, развивающий в стоящей воде скорость 20 кл/ч км против течения и 22 км по течению , затратив на весь путь 3 ч. найдите скорость течения реки?

👇
Ответ:
ALEXIA24
ALEXIA24
08.02.2020
Пусть х км в час скорость течения реки, тогда
скорость теплохода по течению (20+х) км /ч,
скорость против течения (20-х) км/ч.

Время по течению 22/(20+х) часов,
время против течения 36/(20-х) часов.
Всего 3 часа.

 Решаем уравнение

\frac{22}{20+x}+ \frac{36}{20-x}=3 \\ \\ 22(20-x)+36(20+x)=3(20-x)(20+x) \\ \\ 3x^2+14x-40=0 \\ \\ D=196+480=676=26^2 \\ \\ x_1=2; x_2=- \frac{20}{3}\ \textless \ 0

  Скорость реки 2 км в час.
Скорость теплохода по течению 20+2=22 км/ч, скорость теплохода  против течения 20-2=18 км/ч.
На путь по течению теплоход затратил
22:22=1 час,
 на путь против течения
36:18= 2 часа.
Всего
1+2=3 часа
4,5(71 оценок)
Открыть все ответы
Ответ:
slkncv
slkncv
08.02.2020

x²+9y⁴+1 ≥ -3xy²-x+3y²

x²+x+1 ≥ -3xy²+3y²-9y⁴

x²+x+1 ≥ -3y²(x-1+y²)

y²≥0 за будь-якого значення у

⇒ -3y²≤0

Знайдемо вершину параболи f(x)=x²+x+1

xo= -b/2a = -1/2= -0,5

f(xo)= 0,25-0,5+1=0,75

Вітки параболи напрямлені вгору, адже а>0, отже в такому випадку значення виразу x²+x+1 завжди додатнє (бо функція завжди додатня)

Тоді x²+x+1>0 за будь-якого значення х

 

1)Якщо у=0, x-будь-яке число, то -3y²=0 ⇒ -3y²(x-1+y²)=0

Як вказано раніше, x²+x+1>0

Будь-яке додатнє число більше нуля, отже й

x²+x+1 > -3y²(x-1+y²) ⇒ x²+9y⁴+1 ≥ -3xy²-x+3y²

2) Якщо х=0, y≠0,

З іншого боку, нерівність можна перетворити на таку:

x²+x+3xy² ≥ 3y²-9y⁴-1

х(x+1+3y²) ≥ 3y²-9y⁴-1

Якщо один із множників--нуль, то і весь вираз дорівнює нулю:

Необхідно довести, що

3y²-9y⁴-1 ≤ 0

-(3y²)²+3y²-1 ≤ 0

y⁴≥0

Заміна: 3y²=n,  n>0

-n²+n-1≤ 0

f(n)= -n²+n-1

no= -1/-2 = 1/2= 0,5

f(no)= -0,25+0,5-1 = -0,75

Вітки параболи напрямлені вниз, бо а<0

Отже, -n²+n-1≤ 0  ⇒ 3y²-9y⁴-1≤0

х(x+1+3y²) ≥ 3y²-9y⁴-1    ⇒    x²+9y⁴+1 ≥ -3xy²-x+3y²

3) Якщо х>0, y≠0

x²+x+3xy² ≥ 3y²-9y⁴-1

x²≥0

Як зазначено раніше, 3y²-9y⁴-1<0

Відомо, що x²>0, 3y²>0

Оскільки х--додатнє число, то 3xy²>0

При додаванні додатніх чисел результат теж додатній: x²+x+3xy²>0

Додатнє число завжди більше за від'ємне, тож

x²+x+3xy² > 3y²-9y⁴-1 ⇒ x²+9y⁴+1 ≥ -3xy²-x+3y²

4) Якщо х<0, y≠0

x²+x+3xy² ≥ -9y⁴+3y²-1

Заміна: 3y²=n,  n>0

f(x)=x²+x(1+n)

b=1+n

коефіцієнт b не впливає на зміщення по ординаті, а коефіцієнта с в наданій квадратичній функції немає. Також вітки параболи напрямлені вгору, бо а>0.

Таким чином, x²+x(1+n)>0, а -n²+n-1<0, тому x²+x(1+n)>-n²+n-1<0   ⇒  x²+x+3xy² ≥ -9y⁴+3y²-1   ⇒  x²+9y⁴+1 ≥ -3xy²-x+3y²

Нерівність доведено

4,6(48 оценок)
Ответ:
Zipchik
Zipchik
08.02.2020
1) (Х + 2)*(x - 2)/ (Х - 1)(x - 2) = (x² - 4) / (Х - 1)(x - 2) = (x² - 4) / (x² - 3x + 2)
(Х + 1) (x - 1) / (Х - 2)(x - 1) = (x² - 1) / (Х - 2)(x - 1) = (x² - 1) / (x² - 3x + 2)
2) (Х - 3) (x - 3)/ (Х + 3)(x - 3) = (x - 3)² / (x² - 9)
 Х*(x + 3) / (Х - 3)(x + 3) = x*(x + 3) / (x² - 9)
3)  (3 + Х)(x - 3) / (Х - 5)(x - 3) =  (x² - 9) /  (Х - 5)(x - 3) =  (x² - 9) / (x² - 8x + 15)
 Х*(x - 5) / (Х - 3)(x - 5) = Х*(x - 5) / (x² - 8x + 15)
4)  (Х + 1)(x + 2) /x*(x² - 4) = (x² + 3x + 2) /x*(x² - 4) 
x (4 + Х) / x( x² - 4) 
4,7(68 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ