Ть опервый использование свойств арифметической прогрессии) Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии
- не подходит, количество членов прогрессии не может быть отрицательным ответ: 114
второй на смекалку) (так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)
далее -111+(-110)+.+0+1+2+...+110+111+112+...+х= (-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х= 0+0+0+....+0+0+112+113+114+..+х =112+113+..+х т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0, и фактически наша сумма равна 112+113+...+х (*) так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы , найдем его очень быстро 112=112 112+113=225 - меньше 112+113+114=339 -- совпало значит искомое число х равно 114 ответ: 114
ОДЗ: x²-2x>0 x(x-2)>0 x>0 x>2 x∈(-∞;0)U(2;+∞) 10x-30>0 x>3 ⇒x∈(3;+∞)
x²-3x=10x-30
x²-13x+30=0 В=49
х₁=10 х₂=3 x₂∉ по ОДЗ
ответ:х=10.
log₄(x²+5x)=log₄(9x+32)
ОДЗ: x²+5x>0 x(x+5)>0 x∈(-∞;-5)U(0;+∞) 9x+32>0 x>3⁵/⁹ ⇒
x∈(-∞;-5)U(3⁵/₉;+∞)
x²+5x=9x+32
x²-4x-32=0 D=144
x₁=8 x₂=-4 x₂∉ по ОДЗ.
ответ: х=8.
log₉(x²-9x)=log₉(72-8x)
ОДЗ: x²-9x>0 x(x-9)>0 x∈(-∞;0)U(9;+∞) 72-8x>0 x<9 ⇒ x∈(-∞;0).
x²-9x=72-8x
x²-x-72=0 D=289
x₁=-8 x₂=9 x₂∉ по ОДЗ.
ответ: х=-8.