(x+9)²≥0 при любом значении х (y-3)²≥0 при любом значении у 10>0 Следовательно, левая часть уравнения, представляющая сумму двух неотрицательных и одного положительного числа, является положительным числом. Что и требовалось доказать!
Пусть событие А – появление черного шара, а A⁻ - противоположное событие. Вероятность того, что первый наудачу взятый шар будет чёрным P(A)=5/8 Вероятность того, что второй наудачу взятый шар будет чёрным P(A⁻ * A)= P(A⁻)*P(A)=(3/8)*(5/7)=15/56 Вероятность того, что третий наудачу взятый шар будет чёрным P(A⁻ *A⁻ * A)= P(A⁻)*P(A⁻)*P(A)=(3/8)*(2/7)*(5/6)=5/56
Вероятность того, что испытание закончится после извлечения третьего шара P(A⁻ *A⁻ * A)=5/56 Вероятность того, что потребуется извлечь не больше трех шаров P(A)+P(A⁻ * A)+P(A⁻ *A⁻ * A)=5/8 + 15/56 + 5/56=55/56
(x²+18x)+(y²-6y)+100>0
(x²+2x*9+9²)-9²+(y²-2y*3+3²)-3²+100>0
(x+9)²-81+(y-3)²-9+100>0
(x+9)²+(y-3)²+10>0
(x+9)²≥0 при любом значении х
(y-3)²≥0 при любом значении у
10>0
Следовательно, левая часть уравнения, представляющая сумму двух неотрицательных и одного положительного числа, является положительным числом.
Что и требовалось доказать!