Пусть второй рабочий в час делает х деталей, тогда первый рабочий в час делает х+3 детали Первый рабочий затрачивает на производство 112 деталей: 112/(х+3) часов, тогда второй рабочий на производство 150 деталей затрачивает 150/х часов Составим уравнение: 150/х-112/(х+3)=2 150/х-112/(х+3)-2=0 Общий знаменатель х(х+3), тогда (150(х+3)-112х-2*х(х+3))/x(x+3)=0 ОДЗ х не равно 0 ; -3
Раскроим скобки и решим уравнение: 150х+450 -112х-2х²-6х=0 32х-2х²+450=0 (умножим на -1) 2х²-32х-450=0 (сократим на 2) х²-16х-225=0 Найдем дискриминант: D=b²-4ac=(-16)²-4*1*(-225)=256+900=1156 х1=(-b+√D)/2*a=(-(-16)+√1156)/2*1=(16+34)/2=25 х2=(-b-√D)/2*a=(-(-16)-√1156)/2*1=(16-34)/2= - 9 < 0 - не подходит ответ: Второй рабочий в час изготовляет 25 деталей.
Да я те отвечаю))Ну а сеьезно Значение неизвестной величиной, для которой из данного уравнения мы получим истинное числовое равенство, называется корнем этого уравнения. Два уравнения называются эквивалентными, если множества их корней совпадают, корни первого уравнения являются также корнями второго и наоборот. Действуют следующие правила: 1. Если в данном уравнении значение заменяется другим, но идентичным, мы получаем уравнение, эквивалентное данному. 2. Если в данном уравнении некоторое значение переносится из одной стороны на другую с противоположным знаком, мы получаем уравнение, эквивалентное (равное) заданному. 3. Если мы умножаем или делим обе стороны уравнения на одно и то же число, отличное от нуля, мы получаем уравнение, эквивалентное заданному. Уравнение вида ax + b = 0, где a, b - заданные числа, называется простым уравнением по отношению к неизвестной величине х.
(MK, PA)=0 => -2x+8+3+2=0 => x=13/2