Два автомобиля двигались навстречу друг другу. через 2 ч после встречи расстояние между ними стало равным 280 км. найдите скорость автомобилей, если у одного из них скорость меньше на 10 км/ч.
23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
Прежде всего, надо заметить, что a не равно 0, x не равен 0(знаменатели дробей отличны от 0) Ну и по нашему предположению x и a отличны от 0, поэтому обе части уравнения домножим на неравное 0 выражение ax. ax + 1 = a - 3x ax + 3x = a-1 x(a+3) = a - 1 1)Если a + 3 = 0(a = -3), то 0x = -4, и решений уравнение не имеет. 2)Если a не равно -3, то x = (a-1) / (a+3) Теперь проверим, чтобы x не был равен 0. (a-1) / (a+3) = 0 Отсюда получаем, что a = 1 - при нём решений исходное уравнение не имеет. ответ: 1)при a не равном 0, -3, 1 уравнение имеет единственный корень x = (a-1)/(a+3) 2)При a равном -3 и 1 уравнение решений не имеет 3)При а равном 0 уравнение не имеет смысла.
Решение смотри во вложении