1. Найдите двенадцатый член и сумму первых двенадцати членов арифметической прогрессии (an), если a1 = 3, a2 = 7.
2. Найдите седьмой член и сумму первых шести членов геометрической прогрессии (bn), если b1 = − и q = 2.
3. Найдите сумму бесконечной геометрической прогрессии 27, −9, 3, ... .
4. Найдите номер члена арифметической прогрессии (an), равного 6,4, если a1 = 3,6 и d = 0,4.
5. Какие два числа надо вставить между числами 2 и −54, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений 2x − 1, x + 3 и x + 15 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 7, которые больше 100 и меньше 200.
Вариант 2
1. Найдите восьмой член и сумму первых восьми членов арифметической прогрессии (an), если a1= 1, a2 = 4.
2. Найдите четвёртый член и сумму первых пяти членов геометрической прогрессии (bn), если b1 = и q = 3.
3. Найдите сумму бесконечной геометрической прогрессии −64, 32, −16, ... .
4. Найдите номер члена арифметической прогрессии (an), равного 3,6, если a1 = 2,4 и d = 0,2.
5. Какие два числа надо вставить между числами 8 и −64, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений 3x − 2, x + 2 и x + 8 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 5, которые больше 150 и меньше 250.
Вариант 3
1. Найдите десятый член и сумму первых десяти членов арифметической прогрессии (an), если a1 = 2, a2 = 6.
2. Найдите третий член и сумму первых четырёх членов геометрической прогрессии (bn), если b1 = − и q = 5.
3. Найдите сумму бесконечной геометрической прогрессии −4, 1, − , ... .
4. Найдите номер члена арифметической прогрессии (an), равного 4,9, если a1 = 1,4 и d = 0,5.
5. Какие два числа надо вставить между числами 4 и −108, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений x − 3, x + 4 и 2x − 40 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 9, которые больше 120 и меньше 210.
Вариант 4
1. Найдите седьмой член и сумму первых семи членов арифметической прогрессии (an), если a1 = 5, a2 = 11.
2. Найдите шестой член и сумму первых шести членов геометрической прогрессии (bn), если b1 = и q = 2.
3. Найдите сумму бесконечной геометрической прогрессии −6, 1, − , ... .
4. Найдите номер члена арифметической прогрессии (an), равного 8,9, если a1 = 4,1 и d = 0,6.
5. Какие два числа надо вставить между числами 3 и −192, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений x − 7, x + 5 и 3x + 1 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 11, которые больше 100 и меньше 180.
Объяснение:
18 (км/час) собственная скорость катера.
Объяснение:
Катер проплив 40 км за течею рички и 36 км по озеру витративши на весь шлях 4 години знайдить власну швидкисть катера якщо швидкисть течии ричкч доривнюе2 км год.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость катера (и скорость по озеру).
х+2 - скорость по течению.
40/(х+2) - время катера по течению.
36/х - время катера по озеру.
По условию задачи, на весь путь потрачено 4 часа, уравнение:
40/(х+2)+36/х=4
Общий знаменатель х(х+2), надписываем над числителями дополнительные множители, избавляемся от дроби:
40*х+36*(х+2)=4*х(х+2)
Раскрыть скобки:
40х+36х+72=4х²+8х
Привести подобные члены:
40х+36х+72-4х²-8х=0
-4х²+68х+72=0/-1
4х²-68х-72=0
Разделить уравнение на 4 для упрощения:
х²-17х-18=0, квадратное уравнение, ищем корни:
D=b²-4ac = 289+72=361 √D= 19
х₁=(-b-√D)/2a
х₁=(17-19)/2
х₁= -2/2= -1, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(17+19)/2
х₂=36/2
х₂=18 (км/час) собственная скорость катера.
Проверка:
40/20+36/18=2+2=4 (часа), всё верно.