Формулы приведения работают так: надо определить, какой будет знак (если угол a в первой четверти), поставить его, а потом поменять название на кофункцию, если прибавляется или вычитается нечетное число π/2 (или 90°), и оставить название, если целое число π (180°).
1) Если повернуть угол α на π/2, получится угол II четверти, в ней синус положителен. Прибавляли π/2, sin меняем на cos. sin(π/2 + α) = cos α
2) Прибавление 2π — поворот на полный круг, получаем угол -α из IV четверти. в ней косинус положителен. Поворот на целое число π, не меняем название функции. cos(π - α) = cos α
3) угол из IV четверти, ctg < 0, название не меняется ctg(360° - α) = -ctg α
4) III четверть, cos < 0, название меняется cos(3π/2 + α) = -sin α
5) Прибавлние полного оборота ничего не меняет. sin(2π + α) = sin α
1. Если не лезть в дебри, то рассмотрим такой многочлен: , где - коэффициент
Пусть n чётно, т.е. n = 2k. (Для нечётного n доказательство аналогичное). Сгруппируем члены с чётными и нечётными степенями:
Рассмотрим многочлен g(x) с чётными степенями. Т.к. любое число в чётное степени положительно, то: Покажем, что g(x) функция чётная. Для этого, вместо х подставим (-х): Итак, доказали, что функция g(x)=g(-x) чётная.
Рассмотрим многочлен h(x) с нечётными степенями. Отрицательное число в нечётной степени отрицательно. Покажем, что функция h(x) нечётная, для чего вместо х подставим (-х): Итак, доказали, что функция h(x)=-h(-x) нечётная.
После всего сказанного, имеем: f(x) = g(x) + h(x) функция f(x) представима в виде суммы чётной g(x) и нечётной h(x) функций.
2. А теперь углубимся в дебри. Если функция симметрична относительно начала координат, то её можно представить в виде суммы чётной и нечётной функций. Запишем нашу функцию в таком виде: В правильности такой записи легко убедиться, если в правой части произвести сложение.
Рассмотрим функцию: Выясним, чётная или нет такая функция, для чего опять подставляем вместо икса минус икс: Функция g(x) чётная.
Рассмотрим функцию: и выясним её чётность. Функция h(x) нечётная.
Таким образом, , где g(x) - чётная, а h(x) - нечётная функция. Что и требовалось доказать.
* Более подробно см. соответствующий материал, а для 9 класса достаточно этого.
1) Если повернуть угол α на π/2, получится угол II четверти, в ней синус положителен. Прибавляли π/2, sin меняем на cos.
sin(π/2 + α) = cos α
2) Прибавление 2π — поворот на полный круг, получаем угол -α из IV четверти. в ней косинус положителен. Поворот на целое число π, не меняем название функции.
cos(π - α) = cos α
3) угол из IV четверти, ctg < 0, название не меняется
ctg(360° - α) = -ctg α
4) III четверть, cos < 0, название меняется
cos(3π/2 + α) = -sin α
5) Прибавлние полного оборота ничего не меняет.
sin(2π + α) = sin α