М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Настя16764631
Настя16764631
24.11.2022 03:34 •  Алгебра

Замените выражение тригонометрической функцией угла а: 1) sin (п/2 + a); 2) cos (2п - a); 3) ctg (360º - а); 4) cos (3п/2 + a); 5) sin (2п + a).

👇
Ответ:
aosch2k2
aosch2k2
24.11.2022
Формулы приведения работают так: надо определить, какой будет знак (если угол a в первой четверти), поставить его, а потом поменять название на кофункцию, если прибавляется или вычитается нечетное число π/2 (или 90°), и оставить название, если целое число π (180°).

1) Если повернуть угол α на π/2, получится угол II четверти, в ней синус положителен. Прибавляли π/2, sin меняем на cos.
sin(π/2 + α) = cos α

2) Прибавление 2π — поворот на полный круг, получаем угол -α из IV четверти. в ней косинус положителен. Поворот на целое число π, не меняем название функции.
cos(π - α) = cos α

3) угол из IV четверти, ctg < 0, название не меняется
ctg(360° - α) = -ctg α

4) III четверть, cos < 0, название меняется
cos(3π/2 + α) = -sin α

5) Прибавлние полного оборота ничего не меняет.
sin(2π + α) = sin α
Замените выражение тригонометрической функцией угла а: 1) sin (п/2 + a); 2) cos (2п - a); 3) ctg (36
4,7(20 оценок)
Открыть все ответы
Ответ:
nushales
nushales
24.11.2022
1. Если не лезть в дебри, то рассмотрим такой многочлен:
f(x)=a_n x^n +a_{n-1} x^{n-1} +a_{n-2} x^{n-2} +...+a_2 x^2 +a_1 x^1 +a_0 x^0,
где  a_i  - коэффициент

Пусть n чётно, т.е. n = 2k. (Для нечётного n доказательство аналогичное). Сгруппируем члены с чётными и нечётными степенями:
f(x)=(a_{2k} x^{2k} +a_{2k-2} x^{2k-2} +...+a_2 x^2 +a_0 x^0)+ \\ \\+(a_{2k-1} x^{2k-1} +a_{2k-3} x^{2k-3} +...+a_3 x^3 +a_1 x^1)

Рассмотрим многочлен g(x) с чётными степенями. Т.к. любое число в чётное степени положительно, то:
g(x)=a_{2k} x^{2k} +a_{2k-2} x^{2k-2} +...+a_2 x^2 +a_0 x^0
Покажем, что g(x) функция чётная. Для этого, вместо х подставим (-х):
g(-x)=a_{2k} (-x)^{2k} +a_{2k-2} (-x)^{2k-2} +...+a_2 (-x)^2 +a_0 (-x)^0= \\ \\ =g(x)=a_{2k} x^{2k} +a_{2k-2} x^{2k-2} +...+a_2 x^2 +a_0 x^0=g(x)
Итак, доказали, что функция g(x)=g(-x) чётная.

Рассмотрим многочлен h(x) с нечётными степенями. Отрицательное число в нечётной степени отрицательно.
h(x)=a_{2k-1} x^{2k-1} +a_{2k-3} x^{2k-3} +...+a_3 x^3 +a_1 x^1
Покажем, что функция h(x) нечётная, для чего вместо х подставим (-х):
h(-x)=a_{2k-1} (-x)^{2k-1} +a_{2k-3} (-x)^{2k-3} +...+a_3 (-x)^3 +a_1 (-x)^1= \\ \\ =-a_{2k-1} x^{2k-1} -a_{2k-3} x^{2k-3} -...-a_3 x^3 -a_1 x^1= \\ \\ =-(a_{2k-1} x^{2k-1} +a_{2k-3} x^{2k-3}+-...+a_3 x^3 +a_1 x^1)=-h(x)
Итак, доказали, что функция h(x)=-h(-x) нечётная.

После всего сказанного, имеем:
f(x) = g(x) + h(x)
функция f(x) представима в виде суммы чётной g(x) и нечётной h(x) функций.

2. А теперь углубимся в дебри. Если функция симметрична относительно начала координат, то её можно представить в виде суммы чётной и нечётной функций.
Запишем нашу функцию в таком виде:
f(x)= \frac{f(x)+f(-x)}{2} +\frac{f(x)-f(-x)}{2}
В правильности такой записи легко убедиться, если в правой части произвести сложение.

Рассмотрим функцию:
g(x)=\frac{f(x)+f(-x)}{2}
Выясним, чётная или нет такая функция, для чего опять подставляем вместо икса минус икс:
g(-x)=\frac{f(-x)+f(-(-x))}{2}=\frac{f(-x)+f(x)}{2}=\frac{f(x)+f(-x)}{2}=g(x)
Функция g(x) чётная.

Рассмотрим функцию:
h(x)=\frac{f(x)-f(-x)}{2}
и выясним её чётность.
h(-x)=\frac{f(-x)-f(-(-x))}{2}=\frac{f(-x)-f(x)}{2}=-\frac{f(x)-f(-x)}{2}=-h(x)
Функция h(x) нечётная.

Таким образом, f(x)= g(x)+h(x), где g(x) - чётная, а h(x) - нечётная функция.
Что и требовалось доказать.

* Более подробно см. соответствующий материал, а для 9 класса достаточно этого.
4,6(14 оценок)
Ответ:
Elyanoname
Elyanoname
24.11.2022
Y = 2x - x^2
y = -3
Yкас. = y(x0) + y'(x0)(x-x0)

Найдем x0.
2x-x^2 = -3
-x^2 + 2x + 3 = 0
x^2 - 2x - 3 = 0
a = 1, b= -2, c = -3
D=b^2 - 4ac = 4 + 4*1*3 = 4 + 12 = 16 = 4^2

x1 = (-b + корень из D) / 2a = (2 + 4)/2 = 3
x2 = (-b - корень из D) / 2a = (2 - 4)/2 = -1

Находим производную:
y' = (2x - x^2)' = 2 - 2x

Составляем уравнения касательных:
Yкас. = y(x0) + y'(x0)(x-x0)
y(x1) = 2*3 - 9 = 6-9 = -3
y(x2) = -2 -1 = -3
y'(x1) = 2 - 2*3 = 2 - 6 = -4
y'(x2) = 2+2 = 4

Yк1 = -3 + -4*(x-3) = -3 - 4x + 12 = 9 - 3x
Yк2 = -3 + 4*(x+1) = -3 + 4x + 4 = 1 + 4x
4,7(84 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ