Вчетырёхугольнике abcd на сторонах отмечены четыре точки, делящие стороны в отношении 1: 4, считая от вершин b и d. докажите, что отмеченные точки являются вершинами параллелограмма
обозначим точку на стороне AB за B1, на стороне BC за B2, на стороне DC - D2 и на стороне DA - D1
тогда BB1/BA=1/5 BB2/BC=1/5 => треугольник BB1B2 подобен треугольнику BAC по двум сторонам и углу(общий угол B)=> углы BB1B2 и BAC равны, аналогично равны углы BB2B1 и BCA => прямая B1B2 || прямой AC(диагонали)
аналогично доказывается, что D1D2 || AC => B1B2 || D1D2 по свойству транзитивности
аналогично доказывается, что B2D2 || второй диагонали BD, и B1D1 || BD
отсюда следует, что в четырехуголнике B1B2D2D1 противоположные стороны параллельны => этот четырехугольник - параллелограмм
Решить графически уравнение вида f(x)=g(x), значит построить графики двух функций у=f(x) и у=g(x) и найти точки пересечения этих графиков.
1) Построить параболу у=х² по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.
Построить прямую у=9. Это прямая проходит через точку (0;9) и параллельна оси ох.
Два графика пересекутся в точке, у которой первая координата по оси х равна -3 и в точке, у которой первая координата по оси х равна 3. О т в е т. х=-3; х=3.
2) Аналогично
Построить параболу у=х² по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.
Построить прямую у=4. Это прямая, проходит через точку (0;4) и параллельна оси ох.
Два графика пересекутся в точке, у которой первая координата по оси х равна -2 и в точке, у которой первая координата по оси х равна 2. О т в е т. х=-2; х=2.
1) Ставим 1 том первым. Вторым может быть любой, кроме 4. Это 4 варианта. Остальные 4 тома ставим как угодно. Это 24 варианта. Всего 24*4 = 96 вариантов. 2) Ставим 1 том вторым. Первый - любой, кроме 4. Это 4 варианта. Третьим - тоже любой оставшийся, кроме 4. Это 3 варианта. Остальные 3 тома как угодно. Это 6 вариантов. Всего 4*3*6 = 72 варианта. 3) Ставим 1 том третьим. Первый - какой угодно, это 5 вариантов. Второй - любой, кроме 4. Это 3 варианта. Четвертый - тоже любой, кроме 4. Это 2 варианта. Пятый и шестой - какие угодно. Это 2 варианта. Всего 5*3*2*2 = 60 вариантов. 4) Ставим 1 том четвертым. Это аналогично 3). 60 вариантов. 5) Ставим 1 том пятым. Это аналогично 2). 72 варианта. 6) Ставим 1 том последним. Это аналогично 1). 96 вариантов. Итого 96 + 72 + 60 + 60 + 72 + 96 = 396 вариантов.
обозначим точку на стороне AB за B1, на стороне BC за B2, на стороне DC - D2 и на стороне DA - D1
тогда BB1/BA=1/5 BB2/BC=1/5 => треугольник BB1B2 подобен треугольнику BAC по двум сторонам и углу(общий угол B)=> углы BB1B2 и BAC равны, аналогично равны углы BB2B1 и BCA => прямая B1B2 || прямой AC(диагонали)
аналогично доказывается, что D1D2 || AC => B1B2 || D1D2 по свойству транзитивности
аналогично доказывается, что B2D2 || второй диагонали BD, и B1D1 || BD
отсюда следует, что в четырехуголнике B1B2D2D1 противоположные стороны параллельны => этот четырехугольник - параллелограмм
что и требовалось доказать