М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ntazhibaevaa
ntazhibaevaa
11.12.2021 07:51 •  Алгебра

Найдите какие-нибудь два целых числа, m и n, чтобы значение многочлена m(зх + у) - n(2х+11y) не зависело от значения х

👇
Ответ:
Binnez
Binnez
11.12.2021
m(Зх + у) - n(2х+11y)==3mx+my-2nx-11ny=
=(3m-2n)x-(m+11n)y

Чтобы выражение не зависело от х, нужно чтобы коэффициент перед х был равен 0
3m-2n=0
Это получится при
m=2,  n=3
или
m= 4  n=6
или
m=6 n=9
и т.д.
4,4(24 оценок)
Открыть все ответы
Ответ:
Mary17ice
Mary17ice
11.12.2021
1) 2 целых 1\2*(2\15-3 целых 5\6)+1\4 = 5/2*(2/15 - 23/6) +1/4 = 5/2*(18/90 - 345/90) +1/4 = 5/2*327/90 +1/4 = 327/36 + 1/4 = 327/36+9/36 = 336/36 = 9 целых 12/36 = 9 целых 1/3

2) -1 целая 1\7*(4\5+19\20)*(6 целых 5\6+4 целых 2\3) = -8/7*(16/20+19/20)*(41/6+14/3) = -8/7*35/20*(41/6+28/6) = -10/5*69/6 = -2*69/6 = -69/3 = -23

3) (6 целых 3\8-2целых 3\4)*(-4)+7\18*9 = (51/8-11/4)*(-4)+7/2 = (51/8-22/8)*(-4)+7/2 = 29/8*(-4)+7/2 = -29/2+7/2 = -22/2 =  -11

4) 9 целых 1\6:(4 целых 1\3-8)+24*3\8 = 55/6:(13/3-24/3)+9 = 55/6:(-11/3)+9 = 55/6*(-3/11)+9 = -5/2+9 = 6,5
4,8(94 оценок)
Ответ:
alixegp073ii
alixegp073ii
11.12.2021

Допустим, что \cos x = 0. Тогда имеем уравнение -2\sin^2x=2, не имеющее решений, поскольку в левой части число неположительное, а в правой - положительное, т.е. левая часть никак не может быть равна правой. Т.е. \cos x\neq 0

Преобразуем правую часть:

2 = 2\cdot 1=2(\sin^2x+\cos^2x)=2\sin^2x+2\cos^2x.

Перенесем все влево с противоположным знаком:

3\cos^2x+3\sin x\cos x-2\sin^2x-2\sin^2x-2\cos^2x=0;\\\\\cos^2x+3\sin x\cos x-4\sin^2x=0.

Поскольку \cos x\neq 0, можем разделить обе части уравнения на \cos^2 x. В итоге имеет равносильное исходному уравнение

1+3tg x - 4tg^2x=0|\cdot (-1)

4tg^2x - 3tg x - 1 = 0.

Заметим, что tg x = 1  является корнем уравнения относительно тангенса. Тогда по теореме Виета второй корень равен -\frac{1}{4}.

Соответственно, имеем два случая: или tg x =1, или tg x = -\frac{1}{4}.

1 случай.

 tg x =1;\\\\x=arctg(1) +\pi k, k\in{Z};\\\\x=\frac{\pi}{4} +\pi k, k\in{Z}.

2 случай.

tg x =-\frac{1}{4};\\\\x=arctg(-\frac{1}{4}) +\pi n, n\in{Z};\\\\x=-arctg\frac{1}{4} +\pi n, n\in{Z}.

Имеем две серии корней.

ОТВЕТ:  π/4 + πk, k ∈ Z;   -arctg(1/4) + πn, n ∈ Z.

4,5(17 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ