М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Владислава1626
Владислава1626
01.05.2022 10:38 •  Алгебра

Обчислите интеграл 2; -1 (x^2 - 2x + 3) dx

👇
Ответ:
karina5698586
karina5698586
01.05.2022
Интеграл разбиваешь на сумму интегралов и получаешь:
x^3/3-2x^2/2+3x
Далее используешь формулу Ньютона-Лейбница.
((-1)^3/3-2/2-3)-(2^3/3-2*2^2+3^2)=(-1-1-3)-(8/3-8+9)=-5-(8/3+1)=-5-(11/3)=-5-11/3=-26/3
4,8(76 оценок)
Открыть все ответы
Ответ:
myra5
myra5
01.05.2022

варианта 2 как можно понимать эти выражения (запись в условии немного запутывает):

1. 6^2x+1-6^2x=x(6^2-6^2)+1=1

2. 6^{2x}+1-6^{2x}=1

то есть роли не играет, потому что выражение имеет вид a+1-a=1

сначала прибавляем выражение, а потом его вычитаем, ну а единица тут   спокойно прибавляется и она в ответе.

upd. оказывается, что выражение, по всей видимости, такое:

6^{2x+1}+1-6^{2x}=6^{2x}(6-1)+1=5\cdot6^{2x}+1

если это так, то в условии, конечно, лучше ставить скобки

4,5(14 оценок)
Ответ:
лисичка73
лисичка73
01.05.2022
[[[ 1-ый

17 \cdot 10 = 170 \ ;

221 - 170 = 51 = 17 \cdot 3 \ ;

17 \cdot 13 = 17 \cdot ( 10 + 3 ) = 17 \cdot 10 + 17 \cdot 3 = 170 + 51 = 221 \ ;

17 \cdot (-13) = -221 \ ;

17 \cdot 20 = 340 \ ;

17 \cdot 19 = 17 \cdot ( 20 - 1 ) = 17 \cdot 20 - 17 \cdot 1 = 340 - 17 = 323 \ ;

Итак:

-221 = 17 \cdot (-13) \ ;

323 = 17 \cdot 19 \ ;

между (–13) и 19 (включительно) лежат нечётные числа:
(–13), (–11), (–9), (–7), (–5), (–3), (–1), 1, 3, 5, 7, 9, 11, 13, 15, 17 и 19
– всего 17 чисел.

Нам необходимо найти сумму всех допустимых   k \ ,    каждое из которых представляет собой какое-то допустимое нечётное число, умноженное на 17, тогда можно сложить все эти допустимые нечётные числа и умножить их на 17 (вынести за скобку общий множитель).

Чтобы сложить члены арифметической последовательности (которой являются последовательные нечётные числа), нужно среднеарифметическое крайних членов этой последовательности умножить на их количество. Тогда искомая сумма равна:

S = \frac{ -13 \cdot 17 + 19 \cdot 17 }{2} \cdot 17 = \frac{ 6 \cdot 17 }{2} \cdot 17 = 3 \cdot 17^2 = 3 \cdot 289 = 867 \ ;

[[[ 2-ой

Пусть    k = 17 \cdot (2n+1) \ \ \ , n \in Z \ ;

-221 \leq k < 324 \ ; \ \ \ || : 17

-13 \leq 2n+1 < 19 \frac{1}{17} \ ; \ \ \ || -1

-14 \leq 2n < 18 \frac{1}{17} \ ; \ \ \ || :2

-7 \leq n < 9 \frac{1}{34} \ ;

Итак:

-7 \leq n < 10 \ ;

k = 17 \cdot (2n+1) = 17 \cdot 2n + 17 \cdot 1 \ ;

k = 17 + 34n \ ;

Нам необходимо найти сумму всех членов арифметической прогрессии в пределах индекса    -7 \leq n   который пробегает    10 - (-7) = 17 \    разных значений.

Чтобы сложить члены арифметической прогрессии, нужно среднеарифметическое крайних членов этой последовательности умножить на их количество. Тогда искомая сумма равна:

S = \frac{ [ 17 + 34 \cdot (-7) ] + [ 17 + 34 \cdot 9 ] }{2} \cdot 17 = \frac{ 2 \cdot 17 + 34 \cdot ( -7 + 9 ) }{2} \cdot 17 = \\\\ = ( 17 + \frac{ 34 \cdot 2 }{2} ) \cdot 17 = ( 17 + 17 \cdot 2 ) \cdot 17 = 17^2 \cdot 3 = 289 \cdot 3 = 867 \ ;

О т в е т :  867 .
4,7(31 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ