Если не лень, то можно подставить оба числа в уравнение вместо икса и получить 0=0, но лучше найти корни нашего уравнения x^2-4x+1=0 Д=16-4=12 x1=(4-sqrt(12))/2=(4-2sqrt(3))/2=2-sqrt(3) x2=(4+sqrt(12))/2 = (4+2sqrt(3))/2=2+sqrt(3) ЧТД
Примем за базу индукции n=5. Проверим истинность выражения при n=5: . Получили верное неравенство => базис доказан.
Теперь предположим, что неравенство справедливо при некотором n=k>=5, т.е. выполняется: . Доказав истинность выражения при n=k+1, в соответствии с принципом математической индукции, мы докажем и истинность выражения при n>=5. Используем наше предположение: => => .
Проверим истинность последнего неравенства: .
Т.е. последнее неравенство верно для всех k>0.8, но, по нашему предположению, k>=5, а значит, выражение истинно при всех n=k+1, что и требовалось доказать.
x^2-4x+1=0
Д=16-4=12
x1=(4-sqrt(12))/2=(4-2sqrt(3))/2=2-sqrt(3)
x2=(4+sqrt(12))/2 = (4+2sqrt(3))/2=2+sqrt(3)
ЧТД