Будем отсчитывать угол по часовой стрелке. Т.к. часовая стрелка проходит 360° (полный круг) за 12 часов=720 минут, то ее скорость передвижения 360/720=0,5 градуса в минуту. Минутная стрелка проходит 360° за 60 минут, поэтому ее скорость 360/60=6 градусов в минуту. Угол между стрелками всегда от 0 до 180°. За 25 минут часовая поворачивается на 25*0,5=12,5°, а минутная на 25*6=150°. Пусть изначально между стрелками был угол х. Возможны две ситуации: 1) Изначально часовая стрелка находилась до минутной. Тогда через 25 минут угол между стрелками станет х+150-12,5=х+137,5 если 0≤х<42,5 и станет 360-(х+137,5)=222,5-х, если 42,5≤х≤180. В первом случае получаем уравнение х+137,5=х, которое не имеет решений, а во втором 222,5-х=х, откуда х=111,25°. 2) Часовая стрелка находилась после минутной. Тогда через 25 минут угол между стрелками станет равным 150-х-12,5=137,5-х в случае если 0≤х<137,5 и равным х-137,5 если 137,5≤х≤180. В первом случае получим уравнение 137,5-х=х, откуда х=68,75°. Во втором случае х-137,5=х не имеет решения. Итак, ответ: это угол 111,25° или 68,75°.
Чертим отрезок равный длине одной из сторон. в начало или конец отрезка устанавливаем циркуль и чертим окружность радиусом равным второй стороне. берём транспортир и устанавливаем его в центр окружности и отмеряем угол между исходным отрезком и второй стороной, ставим точку на окружности. соединяем отрезком центр окружности и точку на окружности. далее соединяем второй конец отрезка и точку на окружности. чертим отрезок равный одной из сторон, лучше выбрать большую сторону. в начало отрезка устанавливаем циркуль и радиусом, равным длине второй стороны, чертим окружность. на другом конце отрезка также устанавливаем циркуль и чертим окружность, но радиусом равным длине третьей стороны. получим точку пересечения окружностей. соединяем её с вершинами исходного отрезка и получаем заданный треугольник.