М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
daanya666
daanya666
31.03.2021 19:53 •  Алгебра

При каком значении p уравнение не имеет корней p=x^2-6x+3

👇
Ответ:
mariyasidorova1
mariyasidorova1
31.03.2021
x^2-6x+3=p \\
x^2-6x+3=0 \\
\frac{-b}{2a} = min, \\
\frac{-(-6)}{2} = 6/2= 3 \\
3^2-6*3+3=-6 \\
p\ \textless \ -6

Объясняю решение:

1. Первым делом, я нашел минимальное значение функции.
Оно находится по формуле \frac{-b}{2a} ; [/tex Где [tex]ax^2+bx+c, коэф квадратного уравнения.

2. Т.к. функция имеет наименьшее значение, а именно область значений
E(f), значит она не существует в промежутке (-\infty; -6) не при каком значении x. 
Т.к. p - это параметр(число), то она является горизонтальной прямой, точка касания у p=-6, все что меньше -6 - не имеет решений, а все что выше -  2-а решения.
4,4(67 оценок)
Ответ:
arabenko
arabenko
31.03.2021
Х^2-6х+(3-р)=0
D=36-4(3-p)
Чтобы уравнение не имело корней D должно быть меньше 0, значит
36-4(3-р)<0
36-12+4р<0
24<-4р
-6>р
Р<-6

ответ: при р<-6 уравнение не имеет корней
4,8(96 оценок)
Открыть все ответы
Ответ:
dilfuza2105
dilfuza2105
31.03.2021
Сумма квадратов членов прогрессии может быть записана в виде S1=b1²*(1+q²+q⁴+q⁶+). В скобках стоит бесконечная геометрическая прогрессия со знаменателем q². В условии дана бесконечно убывающая геометрическая прогрессия, а это значит, что её знаменатель q удовлетворяет условию 0<q<1. Но тогда и 0<q²<1, то есть прогрессия в скобках имеет сумму, равную 1/(1-q²). Тогда S1=b1²/(1-q²). А сумма заданной в условии прогрессии S2=b1/(1-q). По условию, S1/S2=b1/(1+q)=16/3. С другой стороны, по условию b2=b1*q=4. Мы получили систему из двух уравнений для определения b1 и q:

b1/(1+q)=16/3;
b1*q=4

Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8,
b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.  
4,6(89 оценок)
Ответ:
llboyn
llboyn
31.03.2021
Уравнение квадратичной функции в общем виде y=ax²+bx+c. Если функция проходит через заданные точки, то они должны удовлетворять этой функции: точка (0;3) _ a0²+b0+c=3; c=3; точка (1;5) _ a1²+b1+c=5; a+b+c=5; точка (2;9); a2²+b2+c=9. Решаем систему этих уравнений: a+b+3=5; 4a+2b+3=9. Из первого уравнения выделяем а: a=2-b и подставляем его во второе уравнение: 4(2-b)+2b=9-3; 8-4b+2b=6; -2b=-2; b=1. Находим а: а=2-1=1. Теперь, когда все коэффициенты известны можем записать уравнение проходящее через заданные точки: у=x²+х+3
Решить составить уравнение квадратичной функции, проходящей через точки: (0; 3) (1; 5) (2; 9) и нари
4,7(98 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ