Решение / ответ:
1) 5x¹⁷ ÷ x¹³ - 16x⁴ =
= 5x¹⁷⁻¹³ - 16x⁴ =
= 5x⁴ - 16x⁴ =
= - 11x⁴.
При x = - 1,
- 11x⁴ = - 11 × (- 1)⁴ = - 11 × 1 = - 11.
2) - 33y⁶ ÷ y⁴ + 37y² =
= - 33y⁶⁻⁴ + 37y² =
= - 33y² + 37y² =
= 4y².
При y = 0,5 ,
4y² = 4 × (0,5)² = 4 × 0,25 = 1.
3) 15z⁹ ÷ z⁶ - 160z³ =
= 15z⁹⁻⁶ - 160z³ =
= 15z³ - 160z³ =
= - 145z³.
При z = - 0,5 ,
- 145z³ = - 145 × (- 0,5)³ = - 145 × (- 0,125) =
= 18,125.
4) 250t⁸ ÷ t⁵ + 6t³ =
= 250t⁸⁻⁵ + 6t³ =
= 250t³ + 6t³ =
= 256t³.
При t = - 4t,
t = - 4t;
t + 4 t = 0;
5t = 0;
t = 0 ÷ 5;
t = 0.
256t³ = 256 × (0)³ = 256 × 0 =
= 0.
Удачи! :)
Объяснение:
1. Элементы множества могут быть перечислены в любом порядке.
1) {1/5; 2/5; 3/5; 4/5}
2) {ф; и; з; к; а}
3) {1; 2; 3; 0}
2. Пересечение и объединение множеств.
A = {1; 2; 3; 4; 6; 12}
B = {1; 2; 4; 8; 16}
Пересечение: {1; 2; 4}
Объединение: {1; 2; 3; 4; 6; 8; 12; 16}
3. Сравнить числа:
1) 5,(16) и 5,16
5,(16) = 5,1616...
5,16 = 5,1600...
5,(16) > 5,16
2) -2,(35) и -2,5
-2,(35) = -2,3535...
-2,5 = -2,5000...
2,5 > 2,3535..., у отрицательных чисел все наоборот поэтому:
-2,(35) > -2,5
3) 6,(23) и 6,24
6,(23) = 6,2323...
6,24 = 6,2400...
6,(23) < 6,24
4. И 5. Задания повторяют 1. И 2.
(0;2)- б (2;1)-а (1;0)-б (-2;1)-а
скорее всего так