На опытном участке леса ежегодный прирост древесины составляет 10%. какое количество древесины будет на этом участке через 6 лет,если первоначально 2,0*10 в 4 степени м в кубе?
Чтобы парабола не имела решений надо чтобы ее значение было всегда больше нуля при любых x при некоторых тк парабола всегда положительна то если рассуждать графически то она не должна пересекать оси абсцис тк вышло бы что она может принимать и пол и отриц знач а тогда чтобы этого не произошло ее ветви должны быть расположены вверх то есть a>0 ,но тк a=1 то это условие выполняется.но тут есть еще 1 условие чтобы yв>0 то есть ее минимальное значение было выше оси обсцис.оно не может лежать на ней тк в задании неравенство строгое ,а решений быть не должно. Таким образом должно вы подняться неравенство yв=-d/4a чтоD=(2a+3)^2-4*(6a+1)=4a^2-12a+5 тогда yв=-4a^2+12a-5/4>0 умножим обе части на -4 получим не забывая менять знак неравенства 4a^2-12a+5<0 ищем корни нашего трехчлена D/4=36-20=16=4^2 a1=(6+4)/4=2,5 a2=(6-4)/4=1/2 раставляем знаки на координатной прямой в итоге нужный интервал где стоит минус a{0,5;2,5} то есть ответ :a{0,5;2,5} надеюсь понятно объяснил?
Ну смотри. Давай представим первое из неизвестных чисел как х. Поскольку они последовательные, т.е. идут друг за другом, значит одно из них больше другого на единицу, значит его можно представить как х+1. Далее нам известно, что произведение двух этих чисел на 271 больше их суммы. Говоря математическим языком х(х+1)-271=х+х+1. Почему здесь не сумма, а вычитание? Т.к. говорится что произведение больше, чем сумма, следовательно если вычесть из произведения 271 получится их сумма. А далее идет простое уравнение.
Изначально количество древесины на участке равно 2 × 10⁴ = 20 000 м³
Ежегодный прирост составляет 10%
Тогда количество древесины через 6 лет равно:
20 000 × 1,1⁶ = 35 431,22 м³
ответ: 35 431,22 м³