а) х2+5х-14=(х-2)(х+7);
х2+5х-14=0;
д=25-4*(-14)=25+56=81;
х1=(-5+9)/2=4/2=2;
х2=(-5-9)/2=-14/2=-7;
б)16х2-14х+3=16(х-0,5)(х-0,375);
16х2-14х+3=0
д=(-14)2-4*16*3=196-192=4;
х1=(14+2)/32=16/32=0,5;
х2=(14-2)/32=12/32=0,375;
в)(3у2-7у-6)/(4-9у2)=3(у-3)(у+2/3)/-9(у-2/3)(у+2/3)=3(у-3)/(6-9у)=
(3у-9)/(6-9у)=3(у-3)/3(2-3у)=(у-3)/(2-3у);
3у2-7у-6=(у-3)(у+2/3);
3у2-7у-6=0
д=49-4*3*(-6)=49+72=121;
у1=(7+11)/6=18/6=3;
у2=(7-11)/6=-4/6=-2/3;
4-9у2=-9(у-2/3)(у+2/3);
4-9у2=0
9у2=4
у1=4/9=2/3;
у2=-2/3.
1)
{
x
+
2
y
=
0
,
5
x
+
y
=
−
18
;
2)
{
2
x
−
5
y
=
10
,
4
x
−
y
=
2
;
3)
{
x
−
2
y
=
1
,
y
−
x
=
−
2
;
4)
{
x
+
y
=
−
3
,
x
−
y
=
−
1.
Решение 1
{
x
+
2
y
=
0
,
5
x
+
y
=
−
18
;
x + 2y = 0
x = −2y
Решение рисунок 1
5x + y = −18
y = −18 − 5x
Решение рисунок 2
Решение рисунок 3
Графики уравнений пересекаются в точке (−4;2), следовательно данная пара чисел является решением данной системы уравнения.
Решение 2
{
2
x
−
5
y
=
10
,
4
x
−
y
=
2
;
2x − 5y = 10
−5y = 10 − 2x
y
=
2
5
x
−
2
Решение рисунок 1
4x − y = 2
−y = 2 − 4x
y = 4x − 2
Решение рисунок 2
Решение рисунок 3
Графики уравнений пересекаются в точке (0;−2), следовательно данная пара чисел является решением данной системы уравнения.
Решение 3
{
x
−
2
y
=
1
,
y
−
x
=
−
2
;
x − 2y = 1
x = 1 + 2y
Решение рисунок 1
y − x = −2
y = x − 2
Решение рисунок 2
Решение рисунок 3
Графики уравнений пересекаются в точке (3;1), следовательно данная пара чисел является решением данной системы уравнения.
Решение 4
{
x
+
y
=
−
3
,
x
−
y
=
−
1.
x + y = −3
y = −3 − x
x − y = −1
−y = −1 − x
y = x + 1
Графики уравнений пересекаются в точке (−2;−1), следовательно данная пара чисел является решением данной системы уравнения.
Объяснение:
Выразим a через b:
Подставляя в первое уравнение, получим:
ответ: (11;4), (7;6)