![sin2x + 2sinx = 1 + cosx\\2sinxcosx+2sinx=1+cosx\\2sinx(1+cosx) = 1 + cosx\\(2sinx-1)(1+cosx) = 0\\sinx = \frac{1}{2} = x = (-1)^n\frac{\pi}{6} + \pi n, n \in Z\\ cosx = -1 = x = \pi + 2\pi m, m \in Z\\x \in [-4;-3]\\-4 < (-1)^n\frac{\pi}{6} + \pi n < -3\\-24 < (-1)^n\pi+6\pi n < -18\\](/tpl/images/1359/4064/d08e0.png)
Подставляем n = 0 - неравенство не выполнено. n = 1 - неравенство не выполнено. Следовательно, при n ≥ 0 решений не будет, т.к. (-1)^n + 6n - функция возрастающая.
Пусть n = -1, тогда выражение
Так как 3.14 < π < 3.15, то
-22.05 < -7π < -21.98. Очевидно, оно попадает на промежуток (-24; -18). Значит, при n = -1 решение есть на данном отрезке. Подставим n = -1 в серию корней:

Такими же рассуждениями приходим к тому, что n ≤ -2 так же не являются решениями.
Теперь рассмотрим вторую серию корней:

Тут совсем все просто: при m = 0, очевидно, неравенство не выполнено. При m = 1 так же. Так как выражение
при возрастании m увеличивается, то и m ≥ 2 также не подходят.
Пусть m = -1, тогда:

Очевидно, что это так. Подставляя m = -2 понимаем, что число меньше -4.
Вопросы ниже в комменты.
ответ: 
cos5x = sin (п/2 - 5х).
sin2x + sin (п/2 - 5х) = 2sin(п/4 - 1,5х)*sin(3,5x - п/4) = 0(по условию). Данное уравнение равносильно совокупности двух уравнений:
sin(п/4 - 1,5х) = 0 и sin(3,5x - п/4) = 0.
Решаете оба (это простейшие тригонометрические уравнения типа sinx = 0), выражаете х и записываете ответ.
cosxcos2x=sinxsin2x
cosxcos2x - sinxsin2x = cos(x + 2x) = cos3x.
Следовательно, исходное уравнение равносильно простейшему тригонометрическому уравнению cos3x = 0. Записывайте решение и выражайте х. Получите ответ.