Испытание состоит в том, что из 25-ти человек выбирают двух.
n=25
Событие A - "Наташа будет дежурить"
m=1 - число исходов испытания, благоприятствующих наступлению события А.
По формуле классической вероятности
p=m/n=1/25=0,4
Вероятность выбора второго дежурного в пару с ней - достоверное событие ( из 24-ти четырех выбрать второго дежурного можно 24-мя
p=24/24=1
Вероятность выбора двух дежурных ( и Наташи и второго) по правилам умножения
0,4·1=0,4
О т в е т. 0,4
Прямая y=kx + b образует с положительным направлением оси Ох
угол α, при этом
tgα=k
Если угол наклона прямой к оси ох -острый, функция возрастает,
при этом тангенс острого угла положительный и k > 0
Если угол наклона прямой к оси ох -тупой, функция убывает.
при этом тангенс тупого угла отрицательный и k < 0
Значит, если
k=6+3a
6 + 3a < 0 ⇒ 3a < - 6 ⇒ a < -2
О т в е т. 1. a < -2
(a-b)^2=(b-a)^2
1)расскрываю форулу с двух сторон
a^2-2ab+b^2=b^2-2ab+b^2
2)так как и с той и с той стороны одинаковые слагаемые , я огу их сократить
3) так как они все сокращаются , то
0=0, что и требовалось доказать