На каждом кубике выпадает любой из 6 вариантов (1, 2, 3, 4, 5, 6), по правилу умножения всего вариантов выпадения очков на двух кубиках 6 * 6 = 36 - это общее число исходов.
Максимальное число очков 3 или меньше, если на каждом из кубиков выпало 1, 2 или 3 (3 варианта на каждый кубик). По правилу умножения таких исходов 3 * 3 = 9. Тогда благоприятных исходов 36 - 9 = 27.
По формуле классической вероятности вероятность равна отношению числа благоприятных исходов к общему числу исходов, что равно 27/36 = 3/4.
Решение: Обозначим объём воды в бассейне за 1(единицу), а наполнение водой бассейна в час первой трубой за (х), а второй трубой за час (у), тогда наполнение бассейна водой обеими трубами наполняется за: 1/ ((х+у)=6 (часов) Если наполнить бассейн первой трубой, бассейн наполнится за: 1/х=10 (часов) Решим эту систему уравнений: 1/(х+у)=6 1/х=10
1=6*(х+у) 1=10*х 1=6х+6у 1=10х Из второго уравнения найдём значение (х) х=1:10 х=0,1 Подставим значение (х) в уравнение: 1=6х+6у 1=6*0,1+6у 6у=1-0,6 6у=0,4 у=0,4 :6 у=4/10 : 6=4/10*6=4/60=2/15 И так как заполнение бассейна второй трубой в час равно у=2/15, то вторая труба заполнит бассейн за : 1 : 2/15=15/2=7,5 (часа)
ответ: Бассейн заполнится второй трубой за 7,5 часов