1) Находим первую производную функции: y' = -3x²+12x+36 Приравниваем ее к нулю: -3x²+12x+36 = 0 x₁ = -2 x₂ = 6 Вычисляем значения функции на концах отрезка f(-2) = -33 f(6) = 223 f(-3) = -20 f(3) = 142 ответ: fmin = -33, fmax = 142 2) a) 1. Находим интервалы возрастания и убывания. Первая производная равна f'(x) = - 6x+12 Находим нули функции. Для этого приравниваем производную к нулю - 6x+12 = 0 Откуда: x₁ = 2 (-∞ ;2) f'(x) > 0 функция возрастает (2; +∞) f'(x) < 0функция убывает В окрестности точки x = 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = 2 - точка максимума. б) 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = -12x2+12x или f'(x) = 12x(-x+1) Находим нули функции. Для этого приравниваем производную к нулю 12x(-x+1) = 0 Откуда: x1 = 0 x2 = 1 (-∞ ;0) f'(x) < 0 функция убывает (0; 1) f'(x) > 0 функция возрастает (1; +∞) f'(x) < 0 функция убывает В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума. В окрестности точки x = 1 производная функции меняет знак с (+) на (-). Следовательно, точка x = 1 - точка максимума.
3. Исследуйте функцию с производной f(x)=2x^2-3x-1 1. D(y) = R 2. Чётность и не чётность: f(-x) = 2(-x)² - 3*(-x) - 1 = 2x² + 3x - 1 функция поменяла знак частично. Значит она ни чётная ни нечётная 3. Найдём наименьшее и наибольшее значение функции Находим первую производную функции: y' = 4x-3 Приравниваем ее к нулю: 4x-3 = 0 x₁ = 3/4 Вычисляем значения функции f(3/4) = -17/8 Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = 4 Вычисляем: y''(3/4) = 4>0 - значит точка x = 3/4 точка минимума функции. 4. Найдём промежутки возрастания и убывания функции: 1. Находим интервалы возрастания и убывания. Первая производная равна f'(x) = 4x-3 Находим нули функции. Для этого приравниваем производную к нулю 4x-3 = 0 Откуда: x₁ = 3/4 (-∞ ;3/4) f'(x) < 0 функция убывает (3/4; +∞) f'(x) > 0 функция возрастает В окрестности точки x = 3/4 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3/4 - точка минимума.
Пусть в стелаже n полок. Задачу будем решать при формул арифметической прогрессии. аn = a1 +(n -1)d Sn = n(a1 +an)/2
an - это в нашем случае число книг на последней полке, а1 - соответственно число книг на первой полке (21 книга). Sn - сумма книг с 1 по n, т.е. всего книг.
При 1 случае расстановки d = 5, т.к. на каждой полке книг прибавляется на 5 n - полок а1 =21 аn = 21 + (n - 1)*5 - книг на последней полке Sn1 = n(a1 +an)/2 = n(21 + 21 + (n - 1)*5) = n(42 + 5n -5) = n(5n +37) = 5n² + 37n
При 2 случае расстановки d = 6, т.к. на каждой полке книг прибавляется на 6 (n -1) - полок, т.к. полок на 1 меньше а1 =21 аn = 21 + ((n -1)- 1)*6 - книг на последней полке Sn2 = (n-1)(21 + 21 + (n -1 - 1)*6) = (n - 1)(42 + 6n -12) = (n-1)(6n +30) = 6n² + 30n -6n -30 = 6n² + 24n -30
Т.к. кол-во книг одинаково, то приравняем S1=S2 5n² + 37n = 6n² + 24n -30 n² - 13n -30 =0 Д = 169 +120 = 289 √Д = 17 n =(13 + 17)/2 = 15 ответ: в стелаже 15 полок.
Так как, числовой значение