Сумма n членов посл-ти в числителе: Sn=[(n+1)^2]*[n/2]-2n-4n+4-6n+12-8n+24+...-n^2+const+...-4n+4-2n= (1) =(n^3)/2+n^2+n/2-2n(1+2+3+4+...+n/2)+A(n^2) (2) <<<Пояснение: представили сумму посл-ти числ-ля как n/2 квадратов сумм пар крайних членов т.е. [(n+1)^2+(n-1+2)^2+(n-2+3)^2+...+([n-n/2]+n/2)^2] и прибавили разницу т.е. напр. для номера 3: (3^2+(n-2)^2)-(3+n-2)^2=-6n+12; для номера 2: -4n+4 и т.д. Таким образом получили (1) Далее (2): А(n^2)-величина порядка не более n^2, получаемая при сложении всех свободных членов из (1)>>> (n^3)/2+n^2+n/2-2n(1+2+3+4+...+n/2)+A(n^2)=(n^3)/2+n^2+n/2-2n([n/2+1]/2*(n/2))+A(n^2)=(n^3)/4+A(n^2)+A(n)+const Отсюда искомый предел: lim[(n^3)/4+A(n^2)+A(n)+const]/[n^3+3n^2+2] при n->& равен 1/4
Формула сокращенного умножения (а+в)^2 выражение в квадрате, т.е. умножить само на себя два раза (а+в)^2=(а+b)*(a+b) умножить многочлен на многочлен, т.е. каждое слагаемое первого множителя умножаем на каждое слагаемое второго (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)= умножение одночлена на многочлен по распределительному закону (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)=a*a+a*b+a*b+b^2 приводим подобные слагаемые (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)=a*a+ a*b+a*b+b^2=a^2+2ab+b^2 (а+в)^2=a^2+2ab+b^2 -формула сокращенного умножения, запоминаем первое и последнее, пропуская выкладки
число,оканчивающееся на три нуля можно представить в виде произведения
А*1000=А*8*125
данное произведение делится на 8, а значит и исходное число делится на 8.