Задача №2. Пусть Х - скорость течения реки, тогда скорость катера по течению равна (8+Х) км/ч, а против течения (8-Х) км/ч. Тогда на путь по течению он затратил 15/(8+Х) ч, а на путь против течения 15/(8-Х) ч.
Т. к. по условию на весь путь туда и обртно затрачено 4 ч, составим уравнение:
15/(8+Х) + 15/(8-Х) = 4 (приводим к общему знаменателю (8+Х) *(8-Х) = 8^2 - Х^2 = 64 - Х^2 )
(120 + 15Х + 120 - 15Х - 4(64 +Х^2) ) /64 - Х^2 = 0
система:
120 + 15Х + 120 - 15Х - 4(64 +Х^2) = 0
64 - Х^2 не равоно 0
Решаем первое ур-ние системы:
240 -256 + 4Х^2 = 0
4Х^2 = 16
Х^2 = 4
Х = 2
Решение:Введем независимые события:
А1 = (при аварии сработает первый сигнализатор);
А2 = (при аварии сработает второй сигнализатор);
по условию задачи P(A1)=0,95, P(A2)=0,9.
Введем событие Х = (при аварии сработает только один сигнализатор). Это событие произойдет, если при аварии сработает первый сигнализатор и не сработает второй, или если при аварии сработает второй сигнализатор и не сработает первый, то есть
Тогда вероятность события Х по теоремам сложения и умножения вероятностей равна
ответ: 0,14.
для того чтобы найти точки пересечения ,нужно решить систему уравнений
x^2 =y-3
подставим во 2 уравнение системы получим
y^2+y-3-17=0
Y^2+Y-20=0
Y=-5 или y=4
тогда x^2=-8 это уравнение не имеет корней
или x^2=1и x=-1 или х=1
значит[-1;4]и[1;4]
точки пересечения
ответ:[-1;4][1;4]